def test_trace(trace):
    Triton.setArchitecture(ARCH.X86)
    symbolization_init()

    astCtxt = Triton.getAstContext()

    for opcode in trace:
        instruction = Instruction()
        instruction.setOpcode(opcode)
        Triton.processing(instruction)
        print instruction.getDisassembly()

        if instruction.isBranch():
            # Opaque Predicate AST
            op_ast = Triton.getPathConstraintsAst()
            # Try another model
            model = Triton.getModel(astCtxt.lnot(op_ast))
            if model:
                print "not an opaque predicate"
            else:
                if instruction.isConditionTaken():
                    print "opaque predicate: always taken"
                else:
                    print "opaque predicate: never taken"

    print '----------------------------------'
    return
Esempio n. 2
0
    def trace(self, ip):
        self.setup()
        while True:
            if len(self.instructions) > 1000:
                break
            op = idc.GetManyBytes(ip, idc.ItemSize(ip))

            prev_esp = self.tx.buildSymbolicRegister(
                self.tx.registers.esp).evaluate()

            ins = Instruction()
            ins.setOpcode(op)
            ins.setAddress(ip)
            self.tx.processing(ins)

            ins_id = self.add_instruction(ins, prev_esp)

            if self.debug:
                reads = " ".join(
                    map(lambda x: x.getName(), self.get_side_reads(ins)))
                writes = " ".join(
                    map(lambda x: x.getName(), self.get_side_writes(ins)))

                mem_writes = " ".join(
                    map(lambda x: "%08x" % x.getAddress(),
                        self.get_side_mem_writes(ins)))

                #print "%08x    [%03d]    %-30s %-20s %-20s %s" % (ip,ins_id,ins.getDisassembly(),reads,writes,self.instructions[-1]['state'])
                print "%08x    [%03d]    %-40s %-30s %-30s (mem writes: %s)" % (
                    ip, ins_id, ins.getDisassembly(), reads, writes,
                    mem_writes)

            next_ip = self.follow_flow()
            if not next_ip:
                break
            ip = next_ip

        good = self.extract_good()
        print "Good instructions: %s" % sorted(good)

        svar_lookup = dict()
        num = 0
        for i in sorted(good):
            esp = ""
            for op in self.instructions[i]['ins'].getOperands():
                if op.getType() == OPERAND.MEM and op.getBaseRegister(
                ).getName() == "esp":
                    esp = "%08x" % op.getAddress()

            line = "[%03d]    %s" % (
                i, self.instructions[i]['ins'].getDisassembly())
            if esp:
                line = re.sub(r"\[esp.*\]", "[%s]" % esp, line)
                if int(esp, 16) not in svar_lookup:
                    svar_lookup[int(esp, 16)] = "svar%d" % num
                    num += 1
                line = line.replace("[%s]" % esp,
                                    "[%s]" % svar_lookup[int(esp, 16)])

            print line
Esempio n. 3
0
class TestInstruction(unittest.TestCase):

    """Testing the Instruction class."""

    def setUp(self):
        """Define and process the instruction to test."""
        self.Triton = TritonContext()
        self.Triton.setArchitecture(ARCH.X86_64)
        self.inst = Instruction()
        self.inst.setOpcode("\x48\x01\xd8")  # add rax, rbx
        self.inst.setAddress(0x400000)
        self.Triton.setConcreteRegisterValue(self.Triton.registers.rax, 0x1122334455667788)
        self.Triton.setConcreteRegisterValue(self.Triton.registers.rbx, 0x8877665544332211)
        self.Triton.processing(self.inst)

    def test_address(self):
        """Check instruction current and next address."""
        self.assertEqual(self.inst.getAddress(), 0x400000)
        self.assertEqual(self.inst.getNextAddress(), 0x400003)

    def test_memory(self):
        """Check memory access."""
        self.assertListEqual(self.inst.getLoadAccess(), [])
        self.assertListEqual(self.inst.getStoreAccess(), [])
        self.assertFalse(self.inst.isMemoryWrite())
        self.assertFalse(self.inst.isMemoryRead())

    def test_registers(self):
        """Check register access."""
        self.assertEqual(len(self.inst.getReadRegisters()), 2, "access RAX and RBX")
        self.assertEqual(len(self.inst.getWrittenRegisters()), 8, "write in RAX, RIP, AF, XF, OF, PF, SF and ZF")

    def test_taints(self):
        """Check taints attributes."""
        self.assertFalse(self.inst.isTainted())

    def test_prefix(self):
        """Check prefix data."""
        self.assertFalse(self.inst.isPrefixed())
        self.assertEqual(self.inst.getPrefix(), PREFIX.INVALID)

    def test_control_flow(self):
        """Check control flow flags."""
        self.assertFalse(self.inst.isControlFlow(), "It is not a jmp, ret or call")
        self.assertFalse(self.inst.isBranch(), "It is not a jmp")

    def test_condition(self):
        """Check condition flags."""
        self.assertFalse(self.inst.isConditionTaken())

    def test_opcode(self):
        """Check opcode informations."""
        self.assertEqual(self.inst.getOpcode(), "\x48\x01\xd8")
        self.assertEqual(self.inst.getType(), OPCODE.ADD)

    def test_thread(self):
        """Check threads information."""
        self.assertEqual(self.inst.getThreadId(), 0)

    def test_operand(self):
        """Check operand information."""
        self.assertEqual(len(self.inst.getOperands()), 2)
        self.assertEqual(self.inst.getOperands()[0].getName(), "rax")
        self.assertEqual(self.inst.getOperands()[1].getName(), "rbx")
        with self.assertRaises(Exception):
            self.inst.getOperands()[2]

    def test_symbolic(self):
        """Check symbolic information."""
        self.assertEqual(len(self.inst.getSymbolicExpressions()), 8)

    def test_size(self):
        """Check size information."""
        self.assertEqual(self.inst.getSize(), 3)

    def test_disassembly(self):
        """Check disassembly equivalent."""
        self.assertEqual(self.inst.getDisassembly(), "add rax, rbx")
Esempio n. 4
0
class TestInstruction(unittest.TestCase):

    """Testing the Instruction class."""

    def setUp(self):
        """Define and process the instruction to test."""
        self.Triton = TritonContext()
        self.Triton.setArchitecture(ARCH.X86_64)
        self.inst = Instruction()
        self.inst.setOpcode(b"\x48\x01\xd8")  # add rax, rbx
        self.inst.setAddress(0x400000)
        self.Triton.setConcreteRegisterValue(self.Triton.registers.rax, 0x1122334455667788)
        self.Triton.setConcreteRegisterValue(self.Triton.registers.rbx, 0x8877665544332211)
        self.Triton.processing(self.inst)

    def test_address(self):
        """Check instruction current and next address."""
        self.assertEqual(self.inst.getAddress(), 0x400000)
        self.assertEqual(self.inst.getNextAddress(), 0x400003)

        inst = Instruction()
        inst.setAddress(-1)
        self.assertEqual(inst.getAddress(), 0xffffffffffffffff)

        inst.setAddress(-2)
        self.assertEqual(inst.getAddress(), 0xfffffffffffffffe)

        inst.setAddress(-3)
        self.assertEqual(inst.getAddress(), 0xfffffffffffffffd)

    def test_memory(self):
        """Check memory access."""
        self.assertListEqual(self.inst.getLoadAccess(), [])
        self.assertListEqual(self.inst.getStoreAccess(), [])
        self.assertFalse(self.inst.isMemoryWrite())
        self.assertFalse(self.inst.isMemoryRead())

    def test_registers(self):
        """Check register access."""
        self.assertEqual(len(self.inst.getReadRegisters()), 2, "access RAX and RBX")
        self.assertEqual(len(self.inst.getWrittenRegisters()), 8, "write in RAX, RIP, AF, XF, OF, PF, SF and ZF")

    def test_taints(self):
        """Check taints attributes."""
        self.assertFalse(self.inst.isTainted())

    def test_prefix(self):
        """Check prefix data."""
        self.assertFalse(self.inst.isPrefixed())
        self.assertEqual(self.inst.getPrefix(), PREFIX.X86.INVALID)

    def test_control_flow(self):
        """Check control flow flags."""
        self.assertFalse(self.inst.isControlFlow(), "It is not a jmp, ret or call")
        self.assertFalse(self.inst.isBranch(), "It is not a jmp")

    def test_condition(self):
        """Check condition flags."""
        self.assertFalse(self.inst.isConditionTaken())

    def test_opcode(self):
        """Check opcode informations."""
        self.assertEqual(self.inst.getOpcode(), b"\x48\x01\xd8")
        self.assertEqual(self.inst.getType(), OPCODE.X86.ADD)

    def test_thread(self):
        """Check threads information."""
        self.assertEqual(self.inst.getThreadId(), 0)

    def test_operand(self):
        """Check operand information."""
        self.assertEqual(len(self.inst.getOperands()), 2)
        self.assertEqual(self.inst.getOperands()[0].getName(), "rax")
        self.assertEqual(self.inst.getOperands()[1].getName(), "rbx")
        with self.assertRaises(Exception):
            self.inst.getOperands()[2]

    def test_symbolic(self):
        """Check symbolic information."""
        self.assertEqual(len(self.inst.getSymbolicExpressions()), 8)

    def test_size(self):
        """Check size information."""
        self.assertEqual(self.inst.getSize(), 3)

    def test_disassembly(self):
        """Check disassembly equivalent."""
        self.assertEqual(self.inst.getDisassembly(), "add rax, rbx")
Esempio n. 5
0
        Triton.processing(inst)

        # Display instruction
        print inst

        # Display symbolic expressions
        for expr in inst.getSymbolicExpressions():
            print '\t', expr

        print


    print 'Display emulated information'
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
    write = inst.getOperands()[0].getAddress()
    print 'Instruction :', inst.getDisassembly()
    print 'Write at    :', hex(write)
    print 'Content     :', hex(Triton.getConcreteMemoryValue(MemoryAccess(write+4, CPUSIZE.DWORD)))
    print 'RAX value   :', hex(Triton.getConcreteRegisterValue(Triton.registers.rax))
    print 'RSI value   :', hex(Triton.getConcreteRegisterValue(Triton.registers.rsi))
    print 'RDI value   :', hex(Triton.getConcreteRegisterValue(Triton.registers.rdi))


    print
    print 'Symbolic registers information'
    print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
    for k, v in Triton.getSymbolicRegisters().items():
        print Triton.getRegister(k), v

    print
    print 'Symbolic memory information'
Esempio n. 6
0
def emulate(pc):
    count = 0
    while pc:
        # Fetch opcode
        opcode = Triton.getConcreteMemoryAreaValue(pc, 16)

        # Create the Triton instruction
        instruction = Instruction()
        instruction.setOpcode(opcode)
        instruction.setAddress(pc)

        # Process
        Triton.processing(instruction)
        count += 1

        # Print instruction
        # print("pc = {:#x}, rax = {:#x}".format(pc, Triton.getConcreteRegisterValue(Triton.registers.rax)))
        # debug("{} (size={})".format(instruction, instruction.getSize()))

        # for expr in instruction.getSymbolicExpressions():
        #     print('\t', expr)

        if instruction.getType() == OPCODE.X86.HLT:
            break

        # Simulate routines
        flag_exit = hookingHandler(instruction)
        if flag_exit:
            break

        # Update branch constraint
        reg_zf = Triton.getRegisterAst(Triton.getRegister(REG.X86.ZF))
        reg_sf = Triton.getRegisterAst(Triton.getRegister(REG.X86.SF))
        reg_of = Triton.getRegisterAst(Triton.getRegister(REG.X86.OF))
        reg_cf = Triton.getRegisterAst(Triton.getRegister(REG.X86.CF))
        ast = Triton.getAstContext()

        # Next
        if instruction.isBranch(
        ) and not instruction.getType() == OPCODE.X86.JMP:
            # メインのバイナリのトレースになるまで読み飛ばし
            while True:
                event = Trace.get_next_branch()
                # debug(event)
                # if Trace.get_relative_addr_and_image(event['inst_addr'])[0] == pc:
                #     break
                if event['inst_addr'].startswith('0x5') and int(
                        event['inst_addr'], 16) & 0xfff == pc & 0xfff:
                    break
            # debug(event)

            # 分岐条件を収集
            def ja_succ(cf, zf):
                # CF=0 and ZF=0
                return ast.land([cf == 0, zf == 0])

            def jae_succ(cf):
                return cf == 0

            def jb_succ(cf):
                return cf == 1

            def jbe_succ(cf, zf):
                # CF=1 or ZF=1
                return ast.lor([cf == 1, zf == 1])

            def jg_succ(zf, sf, of):
                # ZF=0 and SF=OF
                return ast.land([zf == 0, sf == of])

            def jge_succ(sf, of):
                # SF=OF
                return sf == of

            def jl_succ(sf, of):
                # SF ≠ OF
                return sf != of

            def jle_succ(zf, sf, of):
                # ZF=1 or SF ≠ OF
                return ast.lor([zf == 1, sf != of])

            def je_succ(zf):
                return zf == 1

            def jne_succ(zf):
                return zf == 0

            def js_succ(sf):
                return sf == 1

            def jns_succ(sf):
                return sf == 0

            def selecter(instruction, event, succ_opcode, succ, fail_opcode,
                         fail):
                if instruction.getType() == succ_opcode:
                    if event['branch_taken']:
                        return succ
                    else:
                        return fail
                if instruction.getType() == fail_opcode:
                    if event['branch_taken']:
                        return fail
                    else:
                        return succ

            if False:
                pass
            elif instruction.getType() in [OPCODE.X86.JA, OPCODE.X86.JBE]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JA, ja_succ,
                             OPCODE.X86.JBE, jbe_succ)(cf=reg_cf, zf=reg_zf))
            elif instruction.getType() in [OPCODE.X86.JB, OPCODE.X86.JAE]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JB, jb_succ,
                             OPCODE.X86.JAE, jae_succ)(cf=reg_cf, zf=reg_zf))
            elif instruction.getType() in [OPCODE.X86.JL, OPCODE.X86.JGE]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JL, jl_succ,
                             OPCODE.X86.JGE, jge_succ)(sf=reg_sf, of=reg_of))
            elif instruction.getType() in [OPCODE.X86.JG, OPCODE.X86.JLE]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JG, jg_succ,
                             OPCODE.X86.JLE, jle_succ)(zf=reg_zf,
                                                       sf=reg_sf,
                                                       of=reg_of))
            elif instruction.getType() in [OPCODE.X86.JE, OPCODE.X86.JNE]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JE, je_succ,
                             OPCODE.X86.JNE, jne_succ)(zf=reg_zf))
            elif instruction.getType() in [OPCODE.X86.JS, OPCODE.X86.JNS]:
                conditional_branch_constraints.append(
                    selecter(instruction, event, OPCODE.X86.JS, js_succ,
                             OPCODE.X86.JNS, jns_succ)(sf=reg_sf))
            else:
                raise Exception(
                    "Unhandled jcc instruction: {}".format(instruction))

            # 分岐結果をプログラムカウンタに反映
            if event['branch_taken']:
                pc = int(instruction.getDisassembly().split(' ')[-1], 16)
                continue
            else:
                pc = pc + instruction.getSize()
        else:
            pc = Triton.getConcreteRegisterValue(Triton.registers.rip)

    debug('Number of instruction executed: %d' % (count))
    return
Esempio n. 7
0
        # Process everything
        Triton.processing(inst)

        # Display instruction
        print(inst)

        # Display symbolic expressions
        for expr in inst.getSymbolicExpressions():
            print('\t', expr)

        print()

    print('Display emulated information')
    print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
    write = inst.getOperands()[0].getAddress()
    print('Instruction :', inst.getDisassembly())
    print('Write at    :', hex(write))
    print(
        'Content     :',
        hex(
            Triton.getConcreteMemoryValue(
                MemoryAccess(write + 4, CPUSIZE.DWORD))))
    print('RAX value   :',
          hex(Triton.getConcreteRegisterValue(Triton.registers.rax)))
    print('RSI value   :',
          hex(Triton.getConcreteRegisterValue(Triton.registers.rsi)))
    print('RDI value   :',
          hex(Triton.getConcreteRegisterValue(Triton.registers.rdi)))

    print()
    print('Symbolic registers information')
Esempio n. 8
0
def emulate(pc, sgx_ocall, sgx_free, is_threaded):
    count = 0
    policies.init_emulator()
    policies.init_thread_env()
    while pc and count < MAX_INST_CNT:
        if (not policies.is_thread_unlocked()):
            continue
        if is_threaded:
            emul_thread_lock.acquire()
        opcode = Triton.getConcreteMemoryAreaValue(pc, 16)

        instruction = Instruction()
        instruction.setOpcode(opcode)
        instruction.setAddress(pc)

        try:
            ret = Triton.processing(instruction)

            if not ret:
                if WARN_DEBUG:
                    print(
                        '[LIMITATION] unsupported instruction at 0x%x' % (pc))
                Triton.setConcreteRegisterValue(Triton.registers.rip,
                                                instruction.getNextAddress())
        except:
            if WARN_DEBUG:
                print('[EXCEPTION] instruction process error ...')
            if('\xf3\x0f\x1e\xfa' in opcode):
                Triton.setConcreteRegisterValue(Triton.registers.rip,
                                                pc + 0x4)
            else:
                break

        count += 1

        inst_ring_buffer[instruction.getAddress()] = True

        if (PRINT_INST_DEBUG and instruction.getType() == OPCODE.X86.RET):
            ret_addr = Triton.getConcreteRegisterValue(Triton.registers.rip)
            print('[INSTRUCTION] return instruction: ', instruction)
            print('[INSTRUCTION] return to: 0x%x' % ret_addr)

        if (PRINT_INST_DEBUG and instruction.getType() == OPCODE.X86.CALL):
            print('[INSTRUCTION] call instruction: ', instruction)

        policies.push_inst_to_ring_buffer(instruction)

        policies.inspection(instruction)

        if (instruction.getDisassembly() == sgx_ocall
                or instruction.getDisassembly() == sgx_free):
            force_return_to_callsite(0x0)

        if (instruction.getType() == OPCODE.X86.XGETBV):
            Triton.setConcreteRegisterValue(Triton.registers.rip,
                                            instruction.getNextAddress())

        if instruction.getType() == OPCODE.X86.HLT:
            if is_threaded:
                emul_thread_lock.release()
            break

        if (not hook_process_inst(instruction)):
            if is_threaded:
                emul_thread_lock.release()
            break

        if (policies.is_report_avl()):
            print_report()
            policies.clear_last_report()
            if is_threaded:
                emul_thread_lock.release()
            break

        pc = Triton.getConcreteRegisterValue(Triton.registers.rip)
        del instruction

        if is_threaded:
            emul_thread_lock.release()

        if (count % 10000 == 0):
            gc.collect()

    policies.exit_emulator()
    policies.destroy_thread_env()
    return (count)