def test_batch_request_for_batching_model(self):
        input_size = 16

        # graphdef_nobatch_int32_int8_int8 is non batching version.
        # The server should return an error if the batch size dimension 
        # is included in the shape
        tensor_shape = (1, input_size)
        for protocol in ["http", "grpc"]:
            model_name = tu.get_model_name("graphdef", np.int32, np.int8, np.int8)
            in0 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32)
            in1 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32)

            inputs = []
            outputs = []
            if protocol == "http":
                triton_client = tritonhttpclient.InferenceServerClient(url='localhost:8000', verbose=True)
                inputs.append(tritonhttpclient.InferInput('INPUT0', tensor_shape , "INT32"))
                inputs.append(tritonhttpclient.InferInput('INPUT1', tensor_shape, "INT32"))
                outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT1'))
            else:
                triton_client = tritongrpcclient.InferenceServerClient(url='localhost:8001', verbose=True)
                inputs.append(tritongrpcclient.InferInput('INPUT0', tensor_shape , "INT32"))
                inputs.append(tritongrpcclient.InferInput('INPUT1', tensor_shape, "INT32"))
                outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT1'))

            # Initialize the data
            inputs[0].set_data_from_numpy(in0)
            inputs[1].set_data_from_numpy(in1)

            results = triton_client.infer(model_name,
                                          inputs,
                                          outputs=outputs)
    def setUp(self):
        self.model_name_ = "repeat_int32"

        self.inputs_ = []
        self.inputs_.append(grpcclient.InferInput('IN', [1, 1], "INT32"))
        self.inputs_.append(grpcclient.InferInput('DELAY', [1, 1], "UINT32"))
        self.inputs_.append(grpcclient.InferInput('WAIT', [1, 1], "UINT32"))

        self.outputs_ = []
        self.outputs_.append(grpcclient.InferRequestedOutput('OUT'))
Esempio n. 3
0
 def infer(self, _need_tensor_check=False, **_input_tensor):
     inputs = []
     assert _input_tensor.keys() == set(self.all_inputs.keys(
     )), f'{self.model_name} the input tensor not match'
     for m_name, m_tensor_info in self.all_inputs.items():
         m_tensor = _input_tensor[m_name]
         if not (isinstance(m_tensor, np.ndarray)
                 and m_tensor.dtype.name in self.numpy_data_type_mapper):
             raise InferenceTensorCheckFailException(
                 f'tensor {m_name} is available numpy array')
         if _need_tensor_check:
             check_status, check_result = m_tensor_info.tensor_check(
                 m_tensor, 3 * 10 * 1024 * 1024)
             if not check_status:
                 raise InferenceTensorCheckFailException(check_result)
         m_normalized_tensor = m_tensor_info.normalize(
             m_tensor, _tensor_format='chw').astype(m_tensor.dtype)
         m_infer_input = tritongrpcclient.InferInput(
             m_name, m_normalized_tensor.shape,
             self.numpy_data_type_mapper[m_normalized_tensor.dtype.name])
         m_infer_input.set_data_from_numpy(m_normalized_tensor)
         inputs.append(m_infer_input)
     results = self.triton_client.infer(model_name=self.model_name,
                                        model_version=self.model_version,
                                        inputs=inputs)
     to_return_result = dict()
     for m_result_name in self.all_outputs.keys():
         to_return_result[m_result_name] = results.as_numpy(m_result_name)
     return to_return_result
Esempio n. 4
0
def requestGenerator(input_name, output_name, c, h, w, format, dtype, FLAGS):
    # Preprocess image into input data according to model requirements
    image_data = None
    with Image.open(FLAGS.image_filename) as img:
        image_data = preprocess(img, format, dtype, c, h, w, FLAGS.scaling)

    repeated_image_data = [image_data for _ in range(FLAGS.batch_size)]
    batched_image_data = np.stack(repeated_image_data, axis=0)

    # Set the input data
    inputs = []
    if FLAGS.protocol.lower() == "grpc":
        inputs.append(
            tritongrpcclient.InferInput(input_name, batched_image_data.shape, dtype))
        inputs[0].set_data_from_numpy(batched_image_data)
    else:
        inputs.append(
            tritonhttpclient.InferInput(input_name, batched_image_data.shape, dtype))
        inputs[0].set_data_from_numpy(batched_image_data, binary_data=False)

    outputs = []
    if FLAGS.protocol.lower() == "grpc":
        outputs.append(
            tritongrpcclient.InferRequestedOutput(output_name,
                                            class_count=FLAGS.classes))
    else:
        outputs.append(
            tritonhttpclient.InferRequestedOutput(output_name,
                                            binary_data=False,
                                            class_count=FLAGS.classes))

    yield inputs, outputs, FLAGS.model_name, FLAGS.model_version
    def detector(self, frames):
        infer_inputs = [
            triton.InferInput('input_1', (len(frames), 3, *self.resize[::-1]),
                              "FP32")
        ]
        frames = np.array(frames, dtype=np.float32)
        frames = np.transpose(frames, (0, 3, 1, 2))
        infer_inputs[0].set_data_from_numpy(frames)
        result = self.triton_client.infer('retinanet', infer_inputs)
        scores = result.as_numpy('scores').reshape((-1, 100))
        boxes = result.as_numpy('boxes').reshape((-1, 100, 4))
        classes = result.as_numpy('classes').reshape((-1, 100))

        # Calculate embeddings for all the detected subjects
        embs = []
        scores_filtered = []
        boxes_filters = []
        for i in range(len(frames)):
            mask = (scores[i] > 0.4) & (
                classes[i] == 0)  # only care about 'person' with score > 0.4
            scores_i = scores[i, mask]
            boxes_i = boxes[i, mask]

            scores_i, boxes_i = self.bbox_filter(scores_i, boxes_i)

            img = frames[i].astype(np.uint8)  # (3, 800, 1280)
            embs_i = []
            boxes_i = boxes_i.astype(int)
            for j in range(len(boxes_i)):
                imp = img[:, boxes_i[j, 1]:boxes_i[j, 3],
                          boxes_i[j, 0]:boxes_i[j, 2]]
                imp = np.transpose(imp, (1, 2, 0))
                imp = Image.fromarray(imp)
                data = [
                    np.asarray(transforms.Resize(size=(256, 128))(imp)).astype(
                        np.float32)
                ]

                inputs = []
                inputs.append(
                    tritongrpcclient.InferInput('image',
                                                [len(data), 256, 128, 3],
                                                "FP32"))
                # Initialize the data
                inputs[0].set_data_from_numpy(np.asarray(data))
                outputs = []
                outputs.append(
                    tritongrpcclient.InferRequestedOutput('features'))
                results = self.triton_client.infer('osnet_ensemble',
                                                   inputs,
                                                   outputs=outputs)
                emb = np.squeeze(results.as_numpy('features'))
                embs_i.append(emb / np.linalg.norm(emb))
            embs.append(embs_i)
            scores_filtered.append(scores_i)
            boxes_filters.append(boxes_i)

        return np.asarray(scores_filtered), np.asarray(
            boxes_filters), np.asarray(embs)
Esempio n. 6
0
    def setUp(self):
        self.trials_ = [("repeat_int32", None), ("simple_repeat", None),
                        ("sequence_repeat", None),
                        ("repeat_square", self._nested_validate),
                        ("nested_square", self._nested_validate)]
        self.model_name_ = "repeat_int32"

        self.inputs_ = []
        self.inputs_.append(grpcclient.InferInput('IN', [1], "INT32"))
        self.inputs_.append(grpcclient.InferInput('DELAY', [1], "UINT32"))
        self.inputs_.append(grpcclient.InferInput('WAIT', [1], "UINT32"))

        self.outputs_ = []
        self.outputs_.append(grpcclient.InferRequestedOutput('OUT'))
        self.outputs_.append(grpcclient.InferRequestedOutput('IDX'))
        # Some trials only expect a subset of outputs
        self.requested_outputs_ = self.outputs_
    def _initialize_model(self):
        input_cfg = self.model_config['config']['input']
        output_cfg = self.model_config['config']['output']

        input_names = [i['name'] for i in input_cfg]
        output_names = [o['name'] for o in output_cfg]
        print('Input layers: ', output_names)
        print('Output layers: ', output_names)

        input_dims = [[int(dim) for dim in input_cfg[i]['dims']]
                      for i in range(len(input_cfg))]
        output_dims = [[int(dim) for dim in output_cfg[i]['dims']]
                       for i in range(len(output_cfg))]
        self.input_shape = input_dims[0]
        self.output_dims = output_dims

        if self.triton_cfg['model']['precision'] == "FP32":
            mult = 4
        elif self.triton_cfg['model']['precision'] == "FP16":
            mult = 2  # TODO: Fix this
        elif self.triton_cfg['model']['precision'] == "INT8":
            mult = 1  # TODO: Fix this
        else:
            print("unsupported precision in config file: " +
                  str(self.triton_cfg['model']['precision']))
            sys.exit()

        input_byte_sizes_list = [
            self._prod(dims) * mult for dims in input_dims
        ]
        output_byte_sizes_list = [
            self._prod(dims) * mult for dims in output_dims
        ]

        for i in range(len(input_cfg)):
            shm_region_name = self.model_name + "_input" + str(i)
            self._register_system_shm_regions(shm_region_name,
                                              self.input_handles,
                                              input_byte_sizes_list[i],
                                              input_names[i])
            self.input_layers.append(
                tritongrpcclient.InferInput(
                    input_names[i],
                    [1, input_dims[i][0], input_dims[i][1], input_dims[i][2]],
                    "FP32"))
            self.input_layers[-1].set_shared_memory(shm_region_name,
                                                    input_byte_sizes_list[i])

        for i in range(len(output_cfg)):
            shm_region_name = self.model_name + "_output" + str(i)
            self._register_system_shm_regions(shm_region_name,
                                              self.output_handles,
                                              output_byte_sizes_list[i],
                                              output_names[i])
            self.output_layers.append(
                tritongrpcclient.InferRequestedOutput(output_names[i]))
            self.output_layers[-1].set_shared_memory(shm_region_name,
                                                     output_byte_sizes_list[i])
def main():
    FLAGS = parse_args()
    try:
        triton_client = tritongrpcclient.InferenceServerClient(url=FLAGS.url, verbose=FLAGS.verbose)
    except Exception as e:
        print("channel creation failed: " + str(e))
        sys.exit(1)

    model_name = FLAGS.model_name
    model_version = -1

    print("Loading images")

    image_data, labels = load_images(FLAGS.img_dir if FLAGS.img_dir is not None else FLAGS.img)
    image_data = array_from_list(image_data)

    print("Images loaded, inferring")

    # Infer
    outputs = []
    input_name = "INPUT"
    output_name = "OUTPUT"
    input_shape = list(image_data.shape)
    outputs.append(tritongrpcclient.InferRequestedOutput(output_name))

    img_idx = 0
    for batch in batcher(image_data, FLAGS.batch_size):
        print("Input mean before backend processing:", np.mean(batch))
        input_shape[0] = np.shape(batch)[0]
        print("Batch size: ", input_shape[0])
        inputs = [tritongrpcclient.InferInput(input_name, input_shape, "UINT8")]
        # Initialize the data
        inputs[0].set_data_from_numpy(batch)

        # Test with outputs
        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)

        # Get the output arrays from the results
        output0_data = results.as_numpy(output_name)
        print("Output mean after backend processing:", np.mean(output0_data))
        print("Output shape: ", np.shape(output0_data))
        maxs = np.argmax(output0_data, axis=1)
        for i in range(len(maxs)):
            print("Sample ", i, " - label: ", maxs[i], " ~ ", output0_data[i, maxs[i]])
            if maxs[i] != labels[img_idx]:
                sys.exit(1)
            else:
                print("pass")
            img_idx += 1

    statistics = triton_client.get_inference_statistics(model_name=model_name)
    if len(statistics.model_stats) != 1:
        print("FAILED: Inference Statistics")
        sys.exit(1)
Esempio n. 9
0
def main():
    FLAGS = parse_args()
    try:
        triton_client = tritongrpcclient.InferenceServerClient(
            url=FLAGS.url, verbose=FLAGS.verbose)
    except Exception as e:
        print("channel creation failed: " + str(e))
        sys.exit(1)

    model_name = FLAGS.model_name
    model_version = -1

    input_data = [
        randint(0, 255, size=randint(100), dtype='uint8')
        for _ in range(randint(100) * FLAGS.batch_size)
    ]
    input_data = array_from_list(input_data)

    # Infer
    outputs = []
    input_name = "DALI_INPUT_0"
    output_name = "DALI_OUTPUT_0"
    input_shape = list(input_data.shape)
    outputs.append(tritongrpcclient.InferRequestedOutput(output_name))

    for batch in batcher(input_data, FLAGS.batch_size):
        print("Input mean before backend processing:", np.mean(batch))
        input_shape[0] = np.shape(batch)[0]
        print("Batch size: ", input_shape[0])
        inputs = [
            tritongrpcclient.InferInput(input_name, input_shape, "UINT8")
        ]
        # Initialize the data
        inputs[0].set_data_from_numpy(batch)

        # Test with outputs
        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)

        # Get the output arrays from the results
        output0_data = results.as_numpy(output_name)
        print("Output mean after backend processing:", np.mean(output0_data))
        print("Output shape: ", np.shape(output0_data))
        if not math.isclose(np.mean(output0_data), np.mean(batch)):
            print("Pre/post average does not match")
            sys.exit(1)
        else:
            print("pass")

    statistics = triton_client.get_inference_statistics(model_name=model_name)
    if len(statistics.model_stats) != 1:
        print("FAILED: Inference Statistics")
        sys.exit(1)
Esempio n. 10
0
    def test_nobatch_request_for_batching_model(self):
        input_size = 16

        # graphdef_int32_int8_int8 has a batching version with max batch size of 8.
        # The server should return an error if the batch size is not included in the
        # input shapes.
        tensor_shape = (input_size,)
        for protocol in ["http", "grpc"]:
            model_name = tu.get_model_name("graphdef", np.int32, np.int8, np.int8)
            in0 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32)
            in1 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32)

            inputs = []
            outputs = []
            if protocol == "http":
                triton_client = tritonhttpclient.InferenceServerClient(url='localhost:8000', verbose=True)
                inputs.append(tritonhttpclient.InferInput('INPUT0', tensor_shape , "INT32"))
                inputs.append(tritonhttpclient.InferInput('INPUT1', tensor_shape, "INT32"))
                outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT1'))
            else:
                triton_client = tritongrpcclient.InferenceServerClient(url='localhost:8001', verbose=True)
                inputs.append(tritongrpcclient.InferInput('INPUT0', tensor_shape , "INT32"))
                inputs.append(tritongrpcclient.InferInput('INPUT1', tensor_shape, "INT32"))
                outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT0'))
                outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT1'))

            # Initialize the data
            inputs[0].set_data_from_numpy(in0)
            inputs[1].set_data_from_numpy(in1)

            try:
                results = triton_client.infer(model_name,
                                  inputs,
                                  outputs=outputs)
                self.assertTrue(False, "expected failure with no batch request for batching model")
            except InferenceServerException as ex:
                pass
    def _prepare_request(self, protocol):
        if (protocol == "grpc"):
            self.inputs_ = []
            self.inputs_.append(grpcclient.InferInput('INPUT0', [1, 1],
                                                      "INT32"))
            self.outputs_ = []
            self.outputs_.append(grpcclient.InferRequestedOutput('OUTPUT0'))
        else:
            self.inputs_ = []
            self.inputs_.append(httpclient.InferInput('INPUT0', [1, 1],
                                                      "INT32"))
            self.outputs_ = []
            self.outputs_.append(httpclient.InferRequestedOutput('OUTPUT0'))

        self.inputs_[0].set_data_from_numpy(self.input0_data_)
def request_eval(hit_data,row_splits, triton_client, model_name):
    
    np_rs_type = 'int64'
    tr_rs_type = 'INT64'
    
    inputs = []
    outputs = []
    
    
    #print(hit_data.shape)
    #print(row_splits.shape)
    
    inputs.append(tritongrpcclient.InferInput('input_1', hit_data.shape, 'FP32'))
    inputs.append(tritongrpcclient.InferInput('input_2', row_splits.shape, tr_rs_type)) #INT64
    
    inputs[0].set_data_from_numpy(hit_data)
    inputs[1].set_data_from_numpy(row_splits)
    
    outputs.append(tritongrpcclient.InferRequestedOutput('output'))
    outputs.append(tritongrpcclient.InferRequestedOutput('output_1'))
    #outputs.append(tritongrpcclient.InferRequestedOutput('predicted_final_condensates'))
    #outputs.append(tritongrpcclient.InferRequestedOutput('output_row_splits'))
    # predicted_final_1 doesn't matter
    
    results = triton_client.infer(
        model_name=model_name,
        inputs=inputs,
        outputs=outputs
        )
    
    condensates = results.as_numpy('output')
    #condensates = results.as_numpy('predicted_final_condensates')
    #rs = results.as_numpy('output_row_splits')
    
    #print('output',condensates,condensates.shape)
    return condensates
Esempio n. 13
0
def crashing_client(model_name,
                    dtype,
                    tensor_shape,
                    shm_name,
                    triton_client,
                    input_name="INPUT0"):
    in0 = np.random.random(tensor_shape).astype(dtype)
    if "libtorch" in model_name:
        input_name = "INPUT__0"
    inputs = [
        grpcclient.InferInput(input_name, tensor_shape,
                              np_to_triton_dtype(dtype)),
    ]
    inputs[0].set_data_from_numpy(in0)

    # Run in a loop so that it is guaranteed that
    # the inference will not have completed when being terminated.
    while True:
        existing_shm = shared_memory.SharedMemory(shm_name)
        count = np.ndarray((1,), dtype=np.int32, buffer=existing_shm.buf)
        count[0] += 1
        existing_shm.close()
        results = triton_client.infer(model_name, inputs)
Esempio n. 14
0
    FLAGS = parser.parse_args()

    # We use model that takes 1 input tensor containing the delay number of cycles
    # to occupy an SM
    model_name = FLAGS.model
    model_version = "1"

    # Create the data for the input tensor.
    input_data = np.array([FLAGS.delay], dtype=np.int32)

    # Create the inference context for the model.
    if FLAGS.protocol.lower() == "grpc":
        triton_client = tritongrpcclient.InferenceServerClient(
            FLAGS.url, verbose=FLAGS.verbose)
        inputs = [tritongrpcclient.InferInput('in', input_data.shape, "INT32")]
    else:
        triton_client = tritonhttpclient.InferenceServerClient(
            FLAGS.url, verbose=FLAGS.verbose)
        inputs = [tritonhttpclient.InferInput('in', input_data.shape, "INT32")]

    inputs[0].set_data_from_numpy(input_data)

    # Send N inference requests to the inference server. Time the inference for both
    # requests
    start_time = time()

    for i in range(FLAGS.count):
        triton_client.async_infer(model_name,
                                  inputs,
                                  partial(completion_callback),
Esempio n. 15
0
def main(_):
    """
    Ask a question of context on Triton.
    :param context: str
    :param question: str
    :param question_id: int
    :return:
    """
    os.environ[
        "TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false"  #causes memory fragmentation for bert leading to OOM

    tf.compat.v1.logging.info("***** Configuaration *****")
    for key in FLAGS.__flags.keys():
        tf.compat.v1.logging.info('  {}: {}'.format(key, getattr(FLAGS, key)))
    tf.compat.v1.logging.info("**************************")

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    # Get the Data
    if FLAGS.question and FLAGS.context:
        input_data = [{
            "paragraphs": [{
                "context": FLAGS.context,
                "qas": [{
                    "id": 0,
                    "question": FLAGS.question
                }]
            }]
        }]
        eval_examples = read_squad_examples(
            input_file=None,
            is_training=False,
            version_2_with_negative=FLAGS.version_2_with_negative,
            input_data=input_data)
    elif FLAGS.predict_file:
        eval_examples = read_squad_examples(
            input_file=FLAGS.predict_file,
            is_training=False,
            version_2_with_negative=FLAGS.version_2_with_negative)
    else:
        raise ValueError(
            "Either predict_file or question+answer need to defined")

    # Get Eval Features = Preprocessing
    eval_features = []

    def append_feature(feature):
        eval_features.append(feature)

    convert_examples_to_features(examples=eval_examples,
                                 tokenizer=tokenizer,
                                 max_seq_length=FLAGS.max_seq_length,
                                 doc_stride=FLAGS.doc_stride,
                                 max_query_length=FLAGS.max_query_length,
                                 is_training=False,
                                 output_fn=append_feature)

    protocol_str = 'grpc'  # http or grpc
    url = FLAGS.triton_server_url
    verbose = False
    model_name = FLAGS.triton_model_name
    model_version = str(FLAGS.triton_model_version)
    batch_size = FLAGS.predict_batch_size

    triton_client = tritongrpcclient.InferenceServerClient(url, verbose)
    model_metadata = triton_client.get_model_metadata(
        model_name=model_name, model_version=model_version)
    model_config = triton_client.get_model_config(model_name=model_name,
                                                  model_version=model_version)

    user_data = UserData()

    max_outstanding = 20
    # Number of outstanding requests
    outstanding = 0

    sent_prog = tqdm.tqdm(desc="Send Requests", total=len(eval_features))
    recv_prog = tqdm.tqdm(desc="Recv Requests", total=len(eval_features))

    def process_outstanding(do_wait, outstanding):

        if (outstanding == 0 or do_wait is False):
            return outstanding

        # Wait for deferred items from callback functions
        (result, error, idx, start_time,
         inputs) = user_data._completed_requests.get()

        if (result is None):
            return outstanding

        stop = time.time()

        if (error is not None):
            raise ValueError(
                "Context returned null for async id marked as done")

        outstanding -= 1

        time_list.append(stop - start_time)

        batch_count = len(inputs[label_id_key])
        if FLAGS.trt_engine:
            cls_squad_logits = result.as_numpy("cls_squad_logits")
            try:  #when batch size > 1
                start_logits_results = np.array(
                    cls_squad_logits.squeeze()[:, :, 0])
                end_logits_results = np.array(cls_squad_logits.squeeze()[:, :,
                                                                         1])
            except:
                start_logits_results = np.expand_dims(np.array(
                    cls_squad_logits.squeeze()[:, 0]),
                                                      axis=0)
                end_logits_results = np.expand_dims(np.array(
                    cls_squad_logits.squeeze()[:, 1]),
                                                    axis=0)
        else:
            start_logits_results = result.as_numpy("start_logits")
            end_logits_results = result.as_numpy("end_logits")
        for i in range(batch_count):
            unique_id = int(inputs[label_id_key][i][0])
            start_logits = [float(x) for x in start_logits_results[i].flat]
            end_logits = [float(x) for x in end_logits_results[i].flat]
            all_results.append(
                RawResult(unique_id=unique_id,
                          start_logits=start_logits,
                          end_logits=end_logits))

        recv_prog.update(n=batch_count)
        return outstanding

    all_results = []
    time_list = []

    print("Starting Sending Requests....\n")

    all_results_start = time.time()
    idx = 0
    for inputs_dict in batch(eval_features, batch_size):

        present_batch_size = len(inputs_dict[label_id_key])

        if not FLAGS.trt_engine:
            label_ids_data = np.stack(inputs_dict[label_id_key])
        input_ids_data = np.stack(inputs_dict['input_ids'])
        input_mask_data = np.stack(inputs_dict['input_mask'])
        segment_ids_data = np.stack(inputs_dict['segment_ids'])

        inputs = []
        inputs.append(
            tritongrpcclient.InferInput('input_ids', input_ids_data.shape,
                                        "INT32"))
        inputs[0].set_data_from_numpy(input_ids_data)
        inputs.append(
            tritongrpcclient.InferInput('input_mask', input_mask_data.shape,
                                        "INT32"))
        inputs[1].set_data_from_numpy(input_mask_data)
        inputs.append(
            tritongrpcclient.InferInput('segment_ids', segment_ids_data.shape,
                                        "INT32"))
        inputs[2].set_data_from_numpy(segment_ids_data)
        if not FLAGS.trt_engine:
            inputs.append(
                tritongrpcclient.InferInput(label_id_key, label_ids_data.shape,
                                            "INT32"))
            inputs[3].set_data_from_numpy(label_ids_data)

        outputs = []
        if FLAGS.trt_engine:
            outputs.append(
                tritongrpcclient.InferRequestedOutput('cls_squad_logits'))
        else:
            outputs.append(
                tritongrpcclient.InferRequestedOutput('start_logits'))
            outputs.append(tritongrpcclient.InferRequestedOutput('end_logits'))

        start_time = time.time()
        triton_client.async_infer(model_name,
                                  inputs,
                                  partial(completion_callback, user_data, idx,
                                          start_time, inputs_dict),
                                  request_id=str(idx),
                                  model_version=model_version,
                                  outputs=outputs)
        outstanding += 1
        idx += 1

        sent_prog.update(n=present_batch_size)

        # Try to process at least one response per request
        outstanding = process_outstanding(outstanding >= max_outstanding,
                                          outstanding)

    tqdm.tqdm.write(
        "All Requests Sent! Waiting for responses. Outstanding: {}.\n".format(
            outstanding))

    # Now process all outstanding requests
    while (outstanding > 0):
        outstanding = process_outstanding(True, outstanding)

    all_results_end = time.time()
    all_results_total = (all_results_end - all_results_start) * 1000.0

    print("-----------------------------")
    print("Total Time: {} ms".format(all_results_total))
    print("-----------------------------")

    print("-----------------------------")
    print("Total Inference Time = %0.2f for"
          "Sentences processed = %d" % (sum(time_list), len(eval_features)))
    print("Throughput Average (sentences/sec) = %0.2f" %
          (len(eval_features) / all_results_total * 1000.0))
    print("-----------------------------")

    if FLAGS.output_dir and FLAGS.predict_file:
        # When inferencing on a dataset, get inference statistics and write results to json file
        time_list.sort()

        avg = np.mean(time_list)
        cf_95 = max(time_list[:int(len(time_list) * 0.95)])
        cf_99 = max(time_list[:int(len(time_list) * 0.99)])
        cf_100 = max(time_list[:int(len(time_list) * 1)])
        print("-----------------------------")
        print("Summary Statistics")
        print("Batch size =", FLAGS.predict_batch_size)
        print("Sequence Length =", FLAGS.max_seq_length)
        print("Latency Confidence Level 95 (ms) =", cf_95 * 1000)
        print("Latency Confidence Level 99 (ms)  =", cf_99 * 1000)
        print("Latency Confidence Level 100 (ms)  =", cf_100 * 1000)
        print("Latency Average (ms)  =", avg * 1000)
        print("-----------------------------")

        output_prediction_file = os.path.join(FLAGS.output_dir,
                                              "predictions.json")
        output_nbest_file = os.path.join(FLAGS.output_dir,
                                         "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(FLAGS.output_dir,
                                                 "null_odds.json")

        write_predictions(eval_examples, eval_features, all_results,
                          FLAGS.n_best_size, FLAGS.max_answer_length,
                          FLAGS.do_lower_case, output_prediction_file,
                          output_nbest_file, output_null_log_odds_file,
                          FLAGS.version_2_with_negative, FLAGS.verbose_logging)
    else:
        # When inferencing on a single example, write best answer to stdout
        all_predictions, all_nbest_json, scores_diff_json = get_predictions(
            eval_examples, eval_features, all_results, FLAGS.n_best_size,
            FLAGS.max_answer_length, FLAGS.do_lower_case,
            FLAGS.version_2_with_negative, FLAGS.verbose_logging)
        print(
            "Context is: %s \n\nQuestion is: %s \n\nPredicted Answer is: %s" %
            (FLAGS.context, FLAGS.question, all_predictions[0]))
Esempio n. 16
0
    def req_loop(self):
        client = grpcclient.InferenceServerClient(self._server_url)

        inputs = [
            grpcclient.InferInput("INPUT0", self._shape,
                                  np_to_triton_dtype(self._dtype))
        ]

        self._inflight_requests = 0
        start_stat = client.get_inference_statistics(
            model_name=self._model_name)
        global _exit_signal

        while not _exit_signal:
            input_numpy = np.random.random_sample(self._shape).astype(
                self._dtype)
            inputs[0].set_data_from_numpy(input_numpy)
            self._input_data.append(input_numpy)

            with self._sync:

                def _check_can_send():
                    return self._inflight_requests < _inference_concurrency

                can_send = self._sync.wait_for(_check_can_send,
                                               timeout=_response_wait_time_s)
                self._tester.assertTrue(
                    can_send,
                    "client didn't receive a response within {}s".format(
                        _response_wait_time_s))

                callback = functools.partial(AsyncGrpcRunner._on_result, self)
                client.async_infer(
                    model_name=self._model_name,
                    inputs=inputs,
                    request_id="{}".format(self._num_sent_request),
                    callback=callback,
                )
                self._inflight_requests += 1
                self._num_sent_request += 1
                if (self._num_sent_request == _inference_count):
                    _exit_signal = True
                time.sleep(self._delay_ms / 1000.0)

        # wait till receive all requested data
        with self._sync:

            def _all_processed():
                return self._inflight_requests == 0

            self._processed_all = self._sync.wait_for(_all_processed,
                                                      _finish_wait_time_s)
            self._tester.assertTrue(
                self._processed_all,
                "the processing didn't complete even after waiting for {}s".
                format(_finish_wait_time_s))

        end_stat = client.get_inference_statistics(model_name=self._model_name)
        self._processed_request_count = end_stat.model_stats[
            0].inference_stats.success.count - start_stat.model_stats[
                0].inference_stats.success.count
    # Put input data values into shared memory
    shm.set_shared_memory_region(shm_ip0_handle, [input0_data_serialized])
    shm.set_shared_memory_region(shm_ip1_handle, [input1_data_serialized])

    # Register Input0 and Input1 shared memory with Triton Server
    triton_client.register_system_shared_memory("input0_data",
                                                "/input0_simple",
                                                input0_byte_size)
    triton_client.register_system_shared_memory("input1_data",
                                                "/input1_simple",
                                                input1_byte_size)

    # Set the parameters to use data from shared memory
    inputs = []
    inputs.append(grpcclient.InferInput('INPUT0', [1, 16], "BYTES"))
    inputs[-1].set_shared_memory("input0_data", input0_byte_size)

    inputs.append(grpcclient.InferInput('INPUT1', [1, 16], "BYTES"))
    inputs[-1].set_shared_memory("input1_data", input1_byte_size)

    outputs = []
    outputs.append(grpcclient.InferRequestedOutput('OUTPUT0'))
    outputs[-1].set_shared_memory("output0_data", output0_byte_size)

    outputs.append(grpcclient.InferRequestedOutput('OUTPUT1'))
    outputs[-1].set_shared_memory("output1_data", output1_byte_size)

    results = triton_client.infer(model_name=model_name,
                                  inputs=inputs,
                                  outputs=outputs)
Esempio n. 18
0
    FLAGS = parser.parse_args()
    try:
        triton_client = tritongrpcclient.InferenceServerClient(
            url=FLAGS.url, verbose=FLAGS.verbose)
    except Exception as e:
        print("channel creation failed: " + str(e))
        sys.exit()

    model_name = "yolov4"

    # Infer
    inputs = []
    outputs = []
    # the built engine with input NCHW
    inputs.append(tritongrpcclient.InferInput("data", [1, 3, 608, 608],
                                              "FP32"))

    # Initialize the data
    image_obj = Image("image_id", raw_image_path=FLAGS.img)
    ori_w, ori_h = image_obj.pil_image_obj.size
    image_frame, scale_ratio = preprocess(image_obj.pil_image_obj,
                                          input_image_shape=(608, 608))
    inputs[0].set_data_from_numpy(image_frame)

    outputs.append(tritongrpcclient.InferRequestedOutput("prob"))

    # Test with outputs
    results = triton_client.infer(model_name=model_name,
                                  inputs=inputs,
                                  outputs=outputs,
                                  headers={"test": "1"})
Esempio n. 19
0
    for npzfile in sorted(glob.glob('/hgcal_testdata/*.npz')):
        print(npzfile)
        inputs = []
        outputs = []

        with np.load(npzfile) as data:
            x = data['X'].astype(np.float32)
            edge_index = build_edge_index(x.shape[0], data['Ri_rows'],
                                          data['Ri_cols'], data['Ro_rows'],
                                          data['Ro_cols'])
            print(x.shape, edge_index.shape)

        nnodes = x.shape[0]
        nedges = edge_index.shape[1]

        inputs.append(tritongrpcclient.InferInput('x__0', [nnodes, 5], 'FP32'))
        inputs.append(
            tritongrpcclient.InferInput('edge_index__1', [2, nedges], "INT64"))

        inputs[0].set_data_from_numpy(x)
        inputs[1].set_data_from_numpy(edge_index)

        outputs.append(tritongrpcclient.InferRequestedOutput('output__0'))

        results = triton_client.infer(model_name=model_name,
                                      inputs=inputs,
                                      outputs=outputs)
        output0_data = results.as_numpy('output__0')
        print(output0_data)
        del output0_data
def check_sequence_async(client_metadata,
                         trial,
                         model_name,
                         input_dtype,
                         steps,
                         timeout_ms=DEFAULT_TIMEOUT_MS,
                         sequence_name="<unknown>"):
    """Perform sequence of inferences using async run. The 'steps' holds
    a list of tuples, one for each inference with format:

    (flag_str, value, expected_result, delay_ms)

    """
    if (("savedmodel" in trial) or ("graphdef" in trial) or
        ("custom" in trial) or ("plan" in trial)):
        tensor_shape = (
            1,
            1,
        )
    else:
        assert False, "unknown trial type: " + trial

    triton_client = client_metadata[0]
    sequence_id = client_metadata[1]

    # Execute the sequence of inference...
    seq_start_ms = int(round(time.time() * 1000))
    user_data = UserData()
    # Ensure there is no running stream
    triton_client.stop_stream()
    triton_client.start_stream(partial(completion_callback, user_data))

    sent_count = 0
    for flag_str, value, expected_result, delay_ms in steps:
        seq_start = False
        seq_end = False
        if flag_str is not None:
            seq_start = ("start" in flag_str)
            seq_end = ("end" in flag_str)

        if input_dtype == np.object_:
            in0 = np.full(tensor_shape, value, dtype=np.int32)
            in0n = np.array([str(x) for x in in0.reshape(in0.size)],
                            dtype=object)
            in0 = in0n.reshape(tensor_shape)
        else:
            in0 = np.full(tensor_shape, value, dtype=input_dtype)
        inputs = [
            grpcclient.InferInput("INPUT", tensor_shape,
                                  np_to_triton_dtype(input_dtype)),
        ]
        inputs[0].set_data_from_numpy(in0)

        triton_client.async_stream_infer(model_name,
                                         inputs,
                                         sequence_id=sequence_id,
                                         sequence_start=seq_start,
                                         sequence_end=seq_end)
        sent_count += 1

        if delay_ms is not None:
            time.sleep(delay_ms / 1000.0)

    # Process the results in order that they were sent
    result = None
    processed_count = 0
    while processed_count < sent_count:
        (results, error) = user_data._completed_requests.get()
        if error is not None:
            raise error

        (_, value, expected, _) = steps[processed_count]
        processed_count += 1
        if timeout_ms != None:
            now_ms = int(round(time.time() * 1000))
            if (now_ms - seq_start_ms) > timeout_ms:
                raise TimeoutException(
                    "Timeout expired for {}".format(sequence_name))

        result = results.as_numpy("OUTPUT")[0][0]
        if FLAGS.verbose:
            print("{} {}: + {} = {}".format(sequence_name, sequence_id, value,
                                            result))

        if expected is not None:
            if input_dtype == np.object_:
                assert int(
                    result
                ) == expected, "{}: expected result {}, got {}".format(
                    sequence_name, expected, int(result))
            else:
                assert result == expected, "{}: expected result {}, got {}".format(
                    sequence_name, expected, result)
    triton_client.stop_stream()
Esempio n. 21
0
        action="store_true",
        default=False,
        help="Use fp16 precision for input data",
    )
    FLAGS = parser.parse_args()

    triton_client = tritongrpcclient.InferenceServerClient(
        url=FLAGS.triton_server_url, verbose=FLAGS.verbose
    )
    dataloader = get_data_loader(FLAGS.batch_size, data_path=FLAGS.inference_data)

    inputs = []
    inputs.append(
        tritongrpcclient.InferInput(
            "input__0",
            [FLAGS.batch_size, 3, 224, 224],
            "FP16" if FLAGS.fp16 else "FP32",
        )
    )

    outputs = []
    outputs.append(tritongrpcclient.InferRequestedOutput("output__0"))

    all_img = 0
    cor_img = 0

    result_prev = None
    for image, target in tqdm(dataloader):
        if FLAGS.fp16:
            image = image.half()
        inputs[0].set_data_from_numpy(image.numpy())