Esempio n. 1
0
def test_XAS_full_spec_attributes():
    x = np.random.uniform(size=100)
    y = np.random.uniform(size=100)

    structure = Structure.from_file(
        os.path.join(TEST_FILE_DIR, 'Cu_structure.cif'))

    absorbing_site = 0

    full_spectrum = np.random.uniform(size=(100, 6))

    spec = XAS_Spectrum(x,
                        y,
                        structure,
                        absorbing_site,
                        full_spectrum=full_spectrum)

    assert isinstance(spec, XAS_Spectrum)

    assert np.array_equal(spec.E, full_spectrum[:, 0])
    assert np.array_equal(spec.Enorm, full_spectrum[:, 1])
    assert np.array_equal(spec.k, full_spectrum[:, 2])
    assert np.array_equal(spec.mu, full_spectrum[:, 3])
    assert np.array_equal(spec.mu0, full_spectrum[:, 4])
    assert np.array_equal(spec.chi, full_spectrum[:, 5])
    assert spec.abs_idx == 0
    assert isinstance(spec.as_dict(), dict)
Esempio n. 2
0
def test_load_from_doc_and_object():

    with open(os.path.join(TEST_FILE_DIR, 'sample_spectrum_e.txt'), 'r') as f:
        data = loads(f.readline())

    spec1 = XAS_Spectrum.from_atomate_document(data)
    spec2 = XAS_Spectrum.load_from_object(data)

    line = dumps(data)
    spec3 = XAS_Spectrum.load_from_object(line)

    for spec in [spec1, spec2, spec3]:
        assert isinstance(spec, XAS_Spectrum)
        assert spec.has_full_spectrum()
        assert spec.E[0] == 8334.08
        assert spec.Enorm[0] == -9.293
        assert spec.k[0] == -0.8
        assert spec.mu[0] == 0.0519168
        assert spec.mu0[0] == 0.0795718
        assert spec.chi[0] == -0.027655

        assert len(spec.E) == 100
        assert len(spec.Enorm) == 100
        assert len(spec.mu) == 100
        assert len(spec.mu0) == 100
        assert len(spec.k) == 100
        assert len(spec.chi) == 100

    enorm = spec1.Enorm
    sub_enorm = np.add(enorm, 1)
    assert np.isclose(sub_enorm, spec.shifted_Enorm(1)).all()
Esempio n. 3
0
def test_sanity_check():
    X = np.linspace(0, 1, 100)
    Y = np.linspace(.5, -.5, 100)
    bad_spec = XAS_Spectrum(x=X, y=Y)
    assert bad_spec.sanity_check() is False

    good_spec = XAS_Spectrum(x=X, y=X)
    assert good_spec.sanity_check() is True

    Y = np.linspace(-0.001, 0.001, 100)

    bad_spec = XAS_Spectrum(x=X, y=Y)
    assert bad_spec.sanity_check() is False
Esempio n. 4
0
def test_instantiate_XAS_spectra(fake_structure):
    x = np.random.uniform(size=100)
    y = np.random.uniform(size=100)

    absorbing_site = 0

    spec = XAS_Spectrum(x, y, fake_structure, absorbing_site)

    assert isinstance(spec, XAS_Spectrum)
Esempio n. 5
0
def test_XAS_gradient():
    X = np.linspace(0, 1, 500)
    Y = np.sin(X)

    Yprime = np.cos(X)

    spec = XAS_Spectrum(X, Y)
    dy = spec.dy
    assert np.isclose(dy, Yprime, atol=.001).all()
Esempio n. 6
0
def test_projection():
    x = np.linspace(0, np.pi / 2, 100)
    y = np.sin(x)

    spec = XAS_Spectrum(x, y)

    # Test that interpolation method works

    new_xvals = np.linspace(0, np.pi / 2, 300)
    new_yvals = spec.project_to_x_range(new_xvals)
    assert (max(np.abs(y - new_yvals[::3])) < 1e-2)

    new_xvals = np.linspace(-np.pi / 2, np.pi, 300)
    new_yvals = spec.project_to_x_range(new_xvals)
    true_yvals = np.sin(new_xvals)

    # Test that it pads to 0 on the left edge
    assert np.isclose(0.0, np.abs(new_yvals[:33])).all()
    # Test that it extrapolates correctly for a few points
    assert (np.isclose(new_yvals[200:205], true_yvals[200:205])).all()
Esempio n. 7
0
def parse_spectrum(output: str,
                   feff_inp: str = '',
                   kind='2dcsv',
                   *args,
                   **kwargs):
    """

    Open a spectrum file with x as the first column
    and y as the second

    :param feff_inp:
    :param output:
    :param kind: default, 2-dimensional comma separated values
    :return:
    """

    if kind == '2dcsv':
        values = loadtxt(fname=output, *args, **kwargs)

        return XAS_Spectrum(x=values[:, 1], y=values[:, 0])

    if kind == '2dcsv_spec':
        values = loadtxt(fname=output, *args, **kwargs)

        return XAS_Spectrum(x=values[:, 0], y=values[:, 1])

    if kind == 'feff_mu':
        xmu = Xmu.from_file(output, feff_inp)

        return XAS_Spectrum(x=xmu.energies, y=xmu.mu)

    if kind == 'json':

        line = open(output, 'r').readline().strip()

        xas = loads(line)

        return XAS_Spectrum.from_dict(xas)

    else:
        raise NotImplementedError("Type of data file not found")
Esempio n. 8
0
def test_broaden_spectrum():
    x = np.linspace(0, 1, 100)
    y = np.sin(x)
    spec = XAS_Spectrum(x, y)
    assert x[-1] - x[0] == 1.0

    spec.broaden_spectrum_mult(0)
    assert spec.x[-1] - spec.x[0] == 1.0

    spec.broaden_spectrum_mult(.05)
    assert np.isclose(spec.x[-1] - spec.x[0], 1.05)

    assert spec.x[-1] == 1.025
    assert spec.x[0] == -.025

    x = np.linspace(0, 1, 100)
    y = np.sin(x)
    spec = XAS_Spectrum(x, y)
    spec.broaden_spectrum_mult(-.05)

    assert np.isclose(spec.x[-1] - spec.x[0], .95)
    assert spec.x[-1] == .975
    assert spec.x[0] == .025
Esempio n. 9
0
def fake_spectrum(fake_structure):
    x = np.random.uniform(size=100)
    y = np.random.uniform(size=100)

    return XAS_Spectrum(x, y, structure=fake_structure, absorbing_site=0)
Esempio n. 10
0
def test_XAS_Spectrum_methods(fake_spectrum):
    assert isinstance(str(fake_spectrum), str)
    assert 'H' in str(fake_spectrum)
    assert isinstance(fake_spectrum.as_dict(), dict)
    assert isinstance(fake_spectrum.as_str(), str)
    assert fake_spectrum.has_full_spectrum() is False

    X = np.linspace(0, 1, 100)
    Y = np.sin(X)

    assert np.isclose(np.add(fake_spectrum.x, 10),
                      fake_spectrum.shifted_x(10)).all()

    fake_spectrum_2 = XAS_Spectrum(X, Y)

    assert fake_spectrum_2.get_peak_idx() == 99

    fake_spectrum_2.normalize('sum')
    assert np.isclose(np.sum(fake_spectrum_2.y), 1.0)

    fake_spectrum_2.normalize('max')
    assert np.isclose(np.max(fake_spectrum_2.y), 1.0)

    # Reset and shift up
    fake_spectrum_2 = XAS_Spectrum(X, Y + .2)
    fake_spectrum_2.normalize('minmax')
    assert np.isclose(np.min(fake_spectrum_2.y), 0)
    assert np.isclose(np.max(fake_spectrum_2.y), 1.0)

    fake_spectrum_2.normalize('l2')
    assert np.isclose(np.linalg.norm(fake_spectrum_2.y, ord=2), 1.0)