Esempio n. 1
0
    def setUp(self):
        super(AxiomsTest, self).setUp()

        # Make a linear model for testing.
        graph_lin = Graph()

        with graph_lin.as_default():
            x_lin = placeholder('float32', (None, self.input_size))
            y_lin = x_lin @ self.model_lin_weights + self.model_lin_bias

        self.model_lin = ModelWrapper(graph_lin, x_lin, y_lin)

        # Make a deeper model for testing.
        graph_deep = Graph()

        with graph_deep.as_default():
            x_deep = placeholder('float32', (None, self.input_size))
            z1_deep = (x_deep @ self.model_deep_weights_1 +
                       self.model_deep_bias_1)
            z2_deep = relu(z1_deep)
            z3_deep = (z2_deep @ self.model_deep_weights_2 +
                       self.model_deep_bias_2)
            z4_deep = relu(z3_deep)
            y_deep = (z4_deep @ self.model_deep_weights_3 +
                      self.model_deep_bias_3)

        self.model_deep = ModelWrapper(graph_deep, x_deep, y_deep,
                                       dict(layer2=z2_deep, layer3=z3_deep))

        self.layer2 = 'layer2'
        self.layer3 = 'layer3'
Esempio n. 2
0
    def setUp(self):
        super(BatchTest, self).setUp()

        # Make a linear model for testing.
        x_lin = Input((self.input_size, ))
        y_lin = Dense(self.output_size)(x_lin)

        self.model_lin = ModelWrapper(Model(x_lin, y_lin))

        self.model_lin._model.set_weights(
            [self.model_lin_weights, self.model_lin_bias])

        # Make a deeper model for testing.
        x_deep = Input((self.input_size, ))
        y_deep = Dense(self.internal1_size)(x_deep)
        y_deep = Activation('relu')(y_deep)
        y_deep = Dense(self.internal2_size)(y_deep)
        y_deep = Activation('relu')(y_deep)
        y_deep = Dense(self.output_size)(y_deep)

        self.model_deep = ModelWrapper(Model(x_deep, y_deep))

        self.model_deep._model.set_weights([
            self.model_deep_weights_1, self.model_deep_bias_1,
            self.model_deep_weights_2, self.model_deep_bias_2,
            self.model_deep_weights_3, self.model_deep_bias_3
        ])
    def setUp(self):
        super(ModelWrapperTest, self).setUp()

        subclassed = TFFunctionModel()
        subclassed.build((5, 2))
        subclassed.set_weights([
            self.layer1_weights, self.internal_bias, self.layer2_weights,
            self.internal_bias, self.layer3_weights, self.bias
        ])
        self.model = ModelWrapper(subclassed)
        self.model.set_output_layers([subclassed.dense_3])

        self.layer0 = None
        self.layer1 = 0
        self.layer2 = 1
Esempio n. 4
0
    def test_internal_multiple_inputs(self):

        class ConcatenateLayer(Module):

            def forward(this, x1, x2):
                return cat((x1, x2), 1)

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(5, 6)
                this.concat = ConcatenateLayer()
                this.z3 = Linear(7, 7)
                this.y = Linear(7, 3)

            def forward(this, x1, x2):
                x1 = this.z1(x1)
                z = this.concat(x1, x2)
                z = this.z3(z)
                return this.y(z)

        model = ModelWrapper(M(), [(5,), (1,)])

        infl = InternalInfluence(
            model, Cut('concat', anchor='in'), ClassQoI(1), PointDoi())

        res = infl.attributions(
            np.array([[1., 2., 3., 4., 5.]]).astype('float32'),
            np.array([[1.]]).astype('float32'))

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 1))
    def test_anchors(self):
        x = Input((2, ))
        z1 = Dense(2)(x)
        z2 = Activation('relu')(z1)
        y = Dense(1)(z2)

        k_model = Model(x, y)
        k_model.set_weights([
            np.array([[1., 0.], [0., -1.]]),
            np.array([0., 0.]),
            np.array([[1.], [1.]]),
            np.array([0.])
        ])

        model = ModelWrapper(k_model)

        infl_out = InternalInfluence(model,
                                     Cut(2, anchor='out'),
                                     ClassQoI(0),
                                     PointDoi(),
                                     multiply_activation=False)

        infl_in = InternalInfluence(model,
                                    Cut(2, anchor='in'),
                                    ClassQoI(0),
                                    PointDoi(),
                                    multiply_activation=False)

        res_out = infl_out.attributions(np.array([[1., 1.]]))
        res_in = infl_in.attributions(np.array([[1., 1.]]))

        self.assertEqual(res_out.shape, (1, 2))
        self.assertEqual(res_in.shape, (1, 2))
        self.assertTrue(np.allclose(res_out, np.array([[1., 1.]])))
        self.assertTrue(np.allclose(res_in, np.array([[1., 0.]])))
    def test_internal_slice_multiple_layers(self):
        graph = Graph()

        with graph.as_default():
            x1 = tf.placeholder('float32', (None, 5))
            z1 = x1 @ tf.random.normal((5, 6))
            x2 = tf.placeholder('float32', (None, 1))
            z2 = x2 @ tf.random.normal((1, 2))
            z3 = z2 @ tf.random.normal((2, 4))
            z4 = tf.concat([z1, z3], axis=1)
            z5 = z4 @ tf.random.normal((10, 7))
            y = z5 @ tf.random.normal((7, 3))

        model = ModelWrapper(
            graph, [x1, x2], y, dict(cut_layer1=z1, cut_layer2=z2))

        infl = InternalInfluence(
            model, Cut(['cut_layer1', 'cut_layer2']), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
Esempio n. 7
0
    def test_internal_slice_multiple_layers(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.cut_layer1 = Linear(5, 6)
                this.cut_layer2 = Linear(1, 2)
                this.z3 = Linear(2, 4)
                this.z5 = Linear(10, 7)
                this.y = Linear(7, 3)

            def forward(this, x1, x2):
                z1 = this.cut_layer1(x1)
                z2 = this.cut_layer2(x2)
                z3 = this.z3(z2)
                z4 = cat((z1, z3), 1)
                z5 = this.z5(z4)
                return this.y(z5)

        model = ModelWrapper(M(), [(5,), (1,)])

        infl = InternalInfluence(
            model, Cut(['cut_layer1', 'cut_layer2']), ClassQoI(1), PointDoi())

        res = infl.attributions(
            np.array([[1., 2., 3., 4., 5.]]).astype('float32'),
            np.array([[1.]]).astype('float32'))

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
Esempio n. 8
0
    def setUp(self):
        super(AxiomsTest, self).setUp()

        # Make a linear model for testing.
        class M_lin(Module):
            def __init__(this):
                super(M_lin, this).__init__()
                this.layer = Linear(self.input_size, self.output_size)

                this.layer.weight.data = B.as_tensor(self.model_lin_weights.T)
                this.layer.bias.data = B.as_tensor(self.model_lin_bias)

            def forward(this, x):
                return this.layer(x)

        self.model_lin = ModelWrapper(M_lin(), (self.input_size, ))

        # Make a deeper model for testing.
        class M_deep(Module):
            def __init__(this):
                super(M_deep, this).__init__()
                this.l1 = Linear(self.input_size, self.internal1_size)
                this.l1_relu = ReLU()
                this.l2 = Linear(self.internal1_size, self.internal2_size)
                this.l2_relu = ReLU()
                this.l3 = Linear(self.internal2_size, self.output_size)

                this.l1.weight.data = B.as_tensor(self.model_deep_weights_1.T)
                this.l1.bias.data = B.as_tensor(self.model_deep_bias_1)
                this.l2.weight.data = B.as_tensor(self.model_deep_weights_2.T)
                this.l2.bias.data = B.as_tensor(self.model_deep_bias_2)
                this.l3.weight.data = B.as_tensor(self.model_deep_weights_3.T)
                this.l3.bias.data = B.as_tensor(self.model_deep_bias_3)

            def forward(this, x):
                x = this.l1(x)
                x = this.l1_relu(x)
                x = this.l2(x)
                x = this.l2_relu(x)
                return this.l3(x)

        self.model_deep = ModelWrapper(M_deep(), (self.input_size, ))

        self.layer2 = 'l1_relu'
        self.layer3 = 'l2'
    def test_multiple_outputs(self):
        x = Input((5, ))
        z1 = Dense(6)(x)
        z2 = Dense(7)(z1)
        y1 = Dense(2)(z2)
        z3 = Dense(8)(z2)
        y2 = Dense(3)(z3)

        model = ModelWrapper(Model(x, [y1, y2]))
    def test_catch_cut_index_error(self):
        x = Input((2, ))
        z1 = Dense(2)(x)
        z2 = Activation('relu')(z1)
        y = Dense(1)(z2)

        model = ModelWrapper(Model(x, y))

        with self.assertRaises(ValueError):
            infl = InternalInfluence(model, Cut(4), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]))
class ModelWrapperTest(ModelWrapperTestBase, TestCase):
    def setUp(self):
        super(ModelWrapperTest, self).setUp()

        subclassed = TFFunctionModel()
        subclassed.build((5, 2))
        subclassed.set_weights([
            self.layer1_weights, self.internal_bias, self.layer2_weights,
            self.internal_bias, self.layer3_weights, self.bias
        ])
        self.model = ModelWrapper(subclassed)
        self.model.set_output_layers([subclassed.dense_3])

        self.layer0 = None
        self.layer1 = 0
        self.layer2 = 1

    @unittest.skip(
        "Base class uses layer 0 as multi-input but does not exist in subclass"
    )
    def test_qoibprop_multiple_inputs(self):
        return
    def test_catch_cut_name_error(self):
        graph = Graph()

        with graph.as_default():
            x = tf.placeholder('float32', (None, 2))
            z1 = x @ tf.random.normal((2, 2))
            z2 = relu(z1)
            y = z2 @ tf.random.normal((2, 1))

        model = ModelWrapper(graph, x, y)

        with self.assertRaises(ValueError):
            infl = InternalInfluence(
                model, Cut('not_a_real_layer'), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]))
Esempio n. 13
0
    def test_per_timestep(self):
        num_classes = 5
        num_features = 3
        num_timesteps = 4
        num_hidden_state = 10
        batch_size = 32

        base_model = Sequential([
            Input(shape=(num_timesteps, num_features)),
            GRU(num_hidden_state, name="rnn", return_sequences=True),
            Dense(num_classes, name="dense"),
        ])

        model = ModelWrapper(base_model)
        super(MultiQoiTest,
              self).per_timestep_qoi(model, num_classes, num_features,
                                     num_timesteps, batch_size)
Esempio n. 14
0
    def test_anchors(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(2, 2)
                this.z2 = ReLU()
                this.y = Linear(2, 1)

                this.z1.weight.data = B.as_tensor(
                    np.array([[1., 0.], [0., -1.]]).T)
                this.z1.bias.data = B.as_tensor(np.array([0., 0.]))
                this.y.weight.data = B.as_tensor(np.array([[1.], [1.]]).T)
                this.y.bias.data = B.as_tensor(np.array([0.]))

            def forward(this, x):
                z1 = this.z1(x)
                z2 = this.z2(z1)
                return this.y(z2)

        model = ModelWrapper(M(), (2,))

        infl_out = InternalInfluence(
            model,
            Cut('z2', anchor='out'),
            ClassQoI(0),
            PointDoi(),
            multiply_activation=False)

        infl_in = InternalInfluence(
            model,
            Cut('z2', anchor='in'),
            ClassQoI(0),
            PointDoi(),
            multiply_activation=False)

        res_out = infl_out.attributions(np.array([[1., 1.]]))
        res_in = infl_in.attributions(np.array([[1., 1.]]))

        self.assertEqual(res_out.shape, (1, 2))
        self.assertEqual(res_in.shape, (1, 2))
        self.assertTrue(np.allclose(res_out, np.array([[1., 1.]])))
        self.assertTrue(np.allclose(res_in, np.array([[1., 0.]])))
Esempio n. 15
0
    def setUp(self):
        super(ModelWrapperTest, self).setUp()

        x = Input((2,))
        z = Dense(2, activation='relu')(x)
        z = Dense(2, activation='relu')(z)
        y = Dense(1, name='logits')(z)

        self.model = ModelWrapper(Model(x, y))

        self.model._model.set_weights(
            [
                self.layer1_weights, self.internal_bias, self.layer2_weights,
                self.internal_bias, self.layer3_weights, self.bias
            ])

        self.layer0 = 0
        self.layer1 = 1
        self.layer2 = 2
    def test_multiple_inputs(self):
        x1 = Input((5, ))
        z1 = Dense(6)(x1)
        x2 = Input((1, ))
        z2 = Concatenate()([z1, x2])
        z3 = Dense(7)(z2)
        y = Dense(3)(z3)

        model = ModelWrapper(Model([x1, x2], y))

        infl = InternalInfluence(model, InputCut(), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 5))
        self.assertEqual(res[1].shape, (1, 1))
Esempio n. 17
0
    def test_per_timestep(self):
        num_classes = 5
        num_features = 3
        num_timesteps = 4
        num_hidden_state = 10
        batch_size = 32

        class M(Module):
            def __init__(self):
                super(M, self).__init__()
                self.rnn = GRU(num_features, num_hidden_state)
                self.dense = Linear(num_hidden_state, num_classes)

            def forward(self, x):
                z1 = self.rnn(x)
                z2 = self.dense(z1[0])
                return z2

        model = ModelWrapper(M(), (num_timesteps, num_features))
        super(MultiQoiTest,
              self).per_timestep_qoi(model, num_classes, num_features,
                                     num_timesteps, batch_size)
    def test_internal_slice_multiple_layers(self):
        x1 = Input((5, ))
        z1 = Dense(6, name='cut_layer1')(x1)
        x2 = Input((1, ))
        z2 = Dense(2, name='cut_layer2')(x2)
        z3 = Dense(4)(z2)
        z4 = Concatenate()([z1, z3])
        z5 = Dense(7)(z4)
        y = Dense(3)(z5)

        model = ModelWrapper(Model([x1, x2], y))

        infl = InternalInfluence(model, Cut(['cut_layer1', 'cut_layer2']),
                                 ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
Esempio n. 19
0
    def test_catch_cut_name_error(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(2, 2)
                this.z2 = ReLU()
                this.y = Linear(2, 1)

            def forward(this, x):
                z1 = this.z1(x)
                z2 = this.z2(z1)
                return this.y(z2)

        model = ModelWrapper(M(), (2,))

        with self.assertRaises(ValueError):
            infl = InternalInfluence(
                model, Cut('not_a_real_layer'), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]).astype('float32'))
    def test_multiple_inputs(self):
        graph = Graph()

        with graph.as_default():
            x1 = tf.placeholder('float32', (None, 5))
            z1 = x1 @ tf.random.normal((5, 6))
            x2 = tf.placeholder('float32', (None, 1))
            z2 = tf.concat([z1, x2], axis=1)
            z3 = z2 @ tf.random.normal((7, 7))
            y = z3 @ tf.random.normal((7, 3))

        model = ModelWrapper(graph, [x1, x2], y)

        infl = InternalInfluence(model, InputCut(), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 5))
        self.assertEqual(res[1].shape, (1, 1))