Esempio n. 1
0
def main(argv=None):  # pylint: disable=unused-argument
    train_dir = dp.train_dir(FLAGS.train_dir)
    if tf.gfile.Exists(train_dir):
        raise Exception('train_dir: {0} exists'.format(train_dir))
    tf.gfile.MakeDirs(train_dir)
    np.random.seed(FLAGS.random_seed)
    tf.set_random_seed(FLAGS.random_seed)
    train(FLAGS.region, FLAGS.batch_size, FLAGS.mean_subtract)
Esempio n. 2
0
def _inference(data_set, keypoint):
    tf.reset_default_graph()

    ids = Table().read_table(dp.ids_by_data_set(data_set)).column('Id')
    base_png_path = dp.LARGE_DATA_BIN + '/data/raw/'
    if keypoint.file_format == 'a3daps':
        base_png_path += 'a3daps_png/'
    else:
        base_png_path += 'aps_png/'
    base_xml_output_path = dp.REPO_HOME_PATH + '/data/bbox/keypoint_inference/' + keypoint.name

    images_tensor = tf.placeholder(tf.float32, (None, 660, 512, 1))
    model = KeypointDetectModel(batch_size=1,
                                image_dim=(660, 512),
                                anchor_kwargs=keypoint.anchor_kwargs)
    logits_tensor, bboxes_tensor = model.inference(images_tensor, test=True)
    logits_tensor = tf.sigmoid(logits_tensor)
    bboxes_tensor = target_to_box(bboxes_tensor, model.anchors)

    saver = tf.train.Saver(tf.global_variables())

    with tf.Session() as sess:
        saver.restore(
            sess,
            tf.train.get_checkpoint_state(
                dp.train_dir('{0}_keypoint'.format(
                    keypoint.name))).model_checkpoint_path)
        for _id in ids:
            image = np.array(
                Image.open('{0}/{1}/{1}_{2}.png'.format(
                    base_png_path, keypoint.slices[0],
                    _id))).astype(np.float32)
            image -= np.mean(image)
            logits, bboxes = sess.run(
                [logits_tensor, bboxes_tensor],
                feed_dict={images_tensor: image[np.newaxis, :, :, np.newaxis]})
            nms_result = non_max_suppression(bboxes,
                                             logits,
                                             min_clique_size=1,
                                             score_threshold=0.05,
                                             iou_threshold=0.4)
            if len(nms_result) > 0:
                bbox = [int(round(i)) for i in nms_result[0][0]]
            elif keypoint.name == 'butt':
                bbox = [180, 359, 340, 438]
            elif keypoint.name == 'face':
                bbox = [204, 137, 302, 220]
            else:
                bbox = 4 * [0]
            write_xml(None, None, None,
                      [bbox])(base_xml_output_path + '/{}.xml'.format(_id))
Esempio n. 3
0
def main(argv=None):  # pylint: disable=unused-argument
    train_dir = dp.train_dir(FLAGS.train_dir)
    if tf.gfile.Exists(train_dir):
        raise Exception('train_dir: {0} exists'.format(train_dir))
    tf.gfile.MakeDirs(train_dir)
    np.random.seed(FLAGS.random_seed)
    tf.set_random_seed(FLAGS.random_seed)

    if FLAGS.keypoint == 'face':
        keypoint = FACE
    if FLAGS.keypoint == 'butt':
        keypoint = BUTT

    train(keypoint, FLAGS.batch_size, FLAGS.random_seed)
Esempio n. 4
0
def train(region, batch_size, mean_subtract):
    with tf.Graph().as_default():
        global_step = tf.contrib.framework.get_or_create_global_step()

        with tf.device('/cpu:0'):
            host_images, host_labels, host_slcs = ImagePreprocessor(
                'train_0', region, batch_size, mean_subtract).minibatch()

            images_shapes = host_images.get_shape()
            labels_shape = host_labels.get_shape()
            slcs_shape = host_slcs.get_shape()

            ### Validation Code ###
            validation_images, validation_labels, validation_slcs = ImagePreprocessor(
                'validate_0', region, batch_size, mean_subtract).minibatch()

        with tf.device('/gpu:0'):
            gpu_compute_stage = data_flow_ops.StagingArea(
                [tf.float32, tf.int64, tf.int64],
                shapes=[images_shapes, labels_shape, slcs_shape])
            # The CPU-to-GPU copy is triggered here.
            gpu_transfer_op = gpu_compute_stage.put(
                [host_images, host_labels, host_slcs])

            received_values = gpu_compute_stage.get()
            images, labels, slcs = received_values

            model = LocalizationModel(region, batch_size)
            logits = model.inference(images, slcs)

            loss = loss_func(logits, labels, region)

            ### Validation Code ###
            validation_logits = model.inference(validation_images,
                                                validation_slcs,
                                                validate=True)

            validation_loss = loss_func(validation_logits, validation_labels,
                                        region)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = train_func(loss, global_step)
        # Create a saver.
        saver = tf.train.Saver(tf.global_variables())

        # Build an initialization operation to run below.
        init = tf.global_variables_initializer()

        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                                log_device_placement=False))

        sess.run(init)
        model.load_weights(sess)
        if FLAGS.checkpoint_dir:
            saver.restore(
                sess,
                tf.train.get_checkpoint_state(
                    dp.train_dir(FLAGS.checkpoint_dir)).model_checkpoint_path)

        sess.run(gpu_transfer_op)

        assert model.weights_loaded

        with open(dp.train_dir(FLAGS.train_dir + '/train_log.txt'), 'w') as f:
            duration = 0
            for step in xrange(FLAGS.max_steps):
                start_time = time.time()
                _, _, loss_value = sess.run([train_op, gpu_transfer_op, loss])
                duration += time.time() - start_time
                assert not np.isnan(
                    loss_value), 'Model diverged with loss = NaN'

                if step % 10 == 0:
                    num_examples_per_step = batch_size
                    examples_per_sec = num_examples_per_step / (duration /
                                                                10.0)
                    sec_per_batch = duration / 10.0

                    format_str = ('%s: step %d, loss = %.8f '
                                  '(%.1f examples/sec; %.3f sec/batch)')
                    log_text = format_str % (datetime.now(), step, loss_value,
                                             examples_per_sec, sec_per_batch)
                    f.write(log_text + '\n')
                    print(log_text)
                    duration = 0

                # Save the model checkpoint periodically.
                if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                    checkpoint_path = os.path.join(
                        dp.train_dir(FLAGS.train_dir), 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)

                    total_loss = 0
                    num_iter = 30
                    for _ in range(num_iter):
                        loss_of_predictions = sess.run(validation_loss)
                        total_loss += loss_of_predictions

                    log_text = '%s: ' % datetime.now(
                    ) + 'validation loss = %.5f' % (total_loss / num_iter)
                    f.write(log_text + '\n')
                    f.flush()
                    print(colored(log_text, 'yellow', attrs=['bold']))
from datascience import *
import numpy as np
import tensorflow as tf
from tsa.modeling.models.localization_net import LocalizationModel
from tsa.modeling.models.keypoint_crop import crop_and_pad
import tsa.utils.data_path as dp
from skimage.transform import resize

TRAIN_DIR = {
    'arm': dp.train_dir('arm_localization'),
    'torso': dp.train_dir('torso_localization'),
    'thigh': dp.train_dir('thigh_localization'),
    'calf': dp.train_dir('calf_localization')
}

MEAN_SUBTRACT = {'arm': 5.5, 'torso': 23.4, 'thigh': 35.0, 'calf': 8.5}

IMAGE_LENGTH = 200

REGION_ZONES = {'arm': [1, 2, 3, 4], 'thigh': [8, 9, 10, 11, 12]}

BATCH_SIZE = 1

REGION_GRAPHS = {
    'arm': tf.Graph(),
    'torso': tf.Graph(),
    'thigh': tf.Graph(),
    'calf': tf.Graph()
}

REGION_SESSIONS = {
Esempio n. 6
0
from datascience import *
import numpy as np
import tensorflow as tf
from tsa.modeling.models.threat_detect_net import ThreatDetectModel, target_to_box
from tsa.modeling.models.keypoint_crop import crop_and_pad
import tsa.utils.data_path as dp
from skimage.transform import resize

TRAIN_DIR = {
    'arm': dp.train_dir('arm_full'),
    'torso': dp.train_dir('torso_full'),
    'thigh': dp.train_dir('thigh_full'),
    'calf': dp.train_dir('calf_full')
}

BASE_SIZES = {
    'arm': [64, 128],
    'torso': [128, 256],
    'thigh': [128, 256],
    'calf': [128, 128]
}

MEAN_SUBTRACT = {'arm': 5.5, 'torso': 23.4, 'thigh': 35.0, 'calf': 5.5}

BATCH_SIZE = 16

REGION_GRAPHS = {
    'arm': tf.Graph(),
    'torso': tf.Graph(),
    'thigh': tf.Graph(),
    'calf': tf.Graph()
Esempio n. 7
0
def train(keypoint, batch_size, random_seed):

    with tf.Graph().as_default():
        tf.set_random_seed(random_seed)
        global_step = tf.contrib.framework.get_or_create_global_step()

        with tf.device('/cpu:0'):
            host_images, host_bboxes = ImagePreprocessor(
                'train_0', keypoint, batch_size).minibatch()

            images_shapes = host_images.get_shape()
            bboxes_shape = host_bboxes.get_shape()

            ### Validation Code ###
            validation_images, validation_gt_boxes = ImagePreprocessor(
                'validate_0', keypoint, batch_size).minibatch()

        with tf.device('/gpu:0'):
            gpu_compute_stage = data_flow_ops.StagingArea(
                [tf.float32, tf.int64], shapes=[images_shapes, bboxes_shape])
            # The CPU-to-GPU copy is triggered here.
            gpu_transfer_op = gpu_compute_stage.put([host_images, host_bboxes])

            received_values = gpu_compute_stage.get()
            images, gt_boxes = received_values[0], received_values[1]

            model = KeypointDetectModel(batch_size=batch_size,
                                        image_dim=(660, 512),
                                        anchor_kwargs=keypoint.anchor_kwargs)
            logits, bboxes = model.inference(images)
            anchor_gt_box, gt_cls_labels = model.anchor_targets(gt_boxes)

            loss = loss_func(anchor_gt_box, bboxes, gt_cls_labels, logits,
                             model.anchors)

            ### Validation Code ###
            validation_logits, validation_bboxes = model.inference(
                validation_images, validate=True)
            validation_anchor_gt_box, validation_gt_cls_labels = model.anchor_targets(
                validation_gt_boxes)

            validation_loss = loss_func(validation_anchor_gt_box,
                                        validation_bboxes,
                                        validation_gt_cls_labels,
                                        validation_logits, model.anchors)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = train_func(loss, global_step)
        # Create a saver.
        saver = tf.train.Saver(tf.global_variables())

        # Build an initialization operation to run below.
        init = tf.global_variables_initializer()

        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                                log_device_placement=False))

        sess.run(init)
        model.load_weights(sess)

        sess.run(gpu_transfer_op)
        duration = 0
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, _, loss_value = sess.run([train_op, gpu_transfer_op, loss])
            duration += time.time() - start_time
            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = batch_size
                examples_per_sec = num_examples_per_step / (duration / 10.0)
                sec_per_batch = duration / 10.

                format_str = ('%s: step %d, loss = %.8f '
                              '(%.1f examples/sec; %.3f sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))
                duration = 0

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(dp.train_dir(FLAGS.train_dir),
                                               'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

                total_loss = 0
                num_iter = 30
                for _ in range(num_iter):
                    loss_of_predictions = sess.run(validation_loss)
                    total_loss += loss_of_predictions

                print('%s: ' % datetime.now() +
                      colored('validation loss = %.5f' %
                              (total_loss / num_iter),
                              'yellow',
                              attrs=['bold']))
Esempio n. 8
0
def main(argv=None):  # pylint: disable=unused-argument
    train_dir = dp.train_dir(FLAGS.train_dir)
    if tf.gfile.Exists(train_dir):
        raise Exception('train_dir: {0} exists'.format(train_dir))
    tf.gfile.MakeDirs(train_dir)
    np.random.seed(FLAGS.random_seed)
    tf.set_random_seed(FLAGS.random_seed)

    if FLAGS.keypoint == 'face':
        keypoint = FACE
    if FLAGS.keypoint == 'butt':
        keypoint = BUTT

    train(keypoint, FLAGS.batch_size, FLAGS.random_seed)


if __name__ == '__main__':
    FLAGS = tf.app.flags.FLAGS

    tf.app.flags.DEFINE_string(
        'train_dir', dp.train_dir(), """Directory where to write event logs """
        """and checkpoint.""")
    tf.app.flags.DEFINE_string('keypoint', None, 'face or butt')
    tf.app.flags.DEFINE_integer('max_steps', 20000,
                                """Number of batches to run.""")
    tf.app.flags.DEFINE_integer('batch_size', 10, """Batch size""")
    tf.app.flags.DEFINE_integer('random_seed', 29,
                                """Random seed for np and tf""")
    tf.app.run()