def load_solution(self, path=None):
     """
     :param str path: (Optional) Path of solution file. If solution not in directory containing problem file.
     :return: A solution object.
     :rtype: tsp.models.Solution
     """
     load_path = self.out_abs_path if path is None else path
     if self._solution is None:
         self._solution = tsp.load_solution(load_path)
     return self._solution
    plt.title(title)
    plt.savefig(savename)
    plt.cla()


if __name__ == "__main__":

    DATA_PATH = Path("data")
    assert DATA_PATH.exists()
    NAME = "berlin52"
    NAME = "ulysses16"
    PROBLEM_PATH = DATA_PATH / f"{NAME}.tsp"
    SOLUTION_PATH = DATA_PATH / f"{NAME}.opt.tour"

    p = tsp.load_problem(PROBLEM_PATH)
    s = tsp.load_solution(SOLUTION_PATH)

    print(f"Optimal tour: {s.tours}")
    print(f"Optimal tour: {p.trace_tours(s)}")
    g = p.get_graph()
    draw(g, s.tours[0])

#def get_colors(
#    graph, edges, default='b', highlight='r',
#):
#    c = np.full(len(graph.edges), default)
#    w = np.ones(len(graph.edges))
#
#    for i, edge in enumerate(graph.edges):
#        if edge in edges:
#            c[i] = highlight
Esempio n. 3
0
def parse_solution(res_path):
    """ Парсим файл решения """
    solution = tsplib95.load_solution(res_path)
    return np.array(solution.tours[0])
import acopy
import tsplib95

colony = acopy.ant.Colony(alpha=1, beta=3)
problem = tsplib95.load_problem('./data/att48.tsp')

G = problem.get_graph()
solution = tsplib95.load_solution('./data/att48.opt.tour')

print(problem.trace_tours(solution))

ants = 25
iterations = 100
deviation1 = []
solver = acopy.solvers.Solver(rho=0.2, q=1)

for i in range(0, 9):
    G = problem.get_graph()
    colony = acopy.ant.Colony(alpha=1, beta=2)
    tour = solver.solve(G, colony, ants, iterations)
    print(tour.cost)
    deviation1.append(abs(33522 - tour.cost))

result1 = sum(deviation1) / len(deviation1)
print("Ants: ", ants, "Iterations: ", iterations)
print("Averave deviation: ", result1)
print("nodes: ", tour.nodes)
print("\n")

################################################################################
Esempio n. 5
0
import acopy
import tsplib95

from functions import distance_on_unit_sphere
from plotSprawko import plot

colony = acopy.ant.Colony(alpha=1, beta=3)

problem = tsplib95.load_problem('./data/ulysses16.tsp',
                                distance_on_unit_sphere)
problem.special = distance_on_unit_sphere

G = problem.get_graph()

solution = tsplib95.load_solution('./data/ulysses16.opt.tour')
# problem.trace_tours(solution)

ants = 25
iterations = 100
deviation1 = []
solver = acopy.solvers.Solver(rho=0.03, q=1)
optimal_solution = 6859

for i in range(0, 9):
    G = problem.get_graph()
    colony = acopy.ant.Colony(alpha=1, beta=3)
    tour = solver.solve(G, colony, ants, iterations)
    print(tour.cost)
    deviation1.append(abs(optimal_solution - tour.cost))

result1 = sum(deviation1) / len(deviation1)
Esempio n. 6
0
import acopy
import tsplib95

colony = acopy.ant.Colony(alpha=1, beta=3)
problem = tsplib95.load_problem('./data/eil51.tsp')

G = problem.get_graph()
solution = tsplib95.load_solution('./data/eil101.opt.tour')

# print(problem.trace_tours(solution))

# optimal : 426

ants = 200
iterations = 100
deviation1 = []
solver = acopy.solvers.Solver(rho=0.2, q=1)

for i in range(0, 9):
    G = problem.get_graph()
    colony = acopy.ant.Colony(alpha=1, beta=2)
    tour = solver.solve(G, colony, ants, iterations)
    print(tour.cost)
    deviation1.append(abs(426-tour.cost))

result1 = sum(deviation1) / len(deviation1)
print("Ants: ", ants, "Iterations: ", iterations)
print("Averave deviation: ", result1)
print("nodes: ", tour.nodes)
print("\n")