class feature_homography_test(NewOpenCVTests): render = None tracker = None framesCounter = 0 frame = None def test_feature_homography(self): self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5) self.frame = self.render.getNextFrame() self.tracker = PlaneTracker() self.tracker.clear() self.tracker.add_target(self.frame, self.render.getCurrentRect()) while self.framesCounter < 100: self.framesCounter += 1 tracked = self.tracker.track(self.frame) if len(tracked) > 0: tracked = tracked[0] self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6) else: self.assertEqual(0, 1, 'Tracking error') self.frame = self.render.getNextFrame()
class feature_homography_test(NewOpenCVTests): render = None tracker = None framesCounter = 0 frame = None def test_feature_homography(self): self.render = TestSceneRender( self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'), noise=0.5, speed=0.5) self.frame = self.render.getNextFrame() self.tracker = PlaneTracker() self.tracker.clear() self.tracker.add_target(self.frame, self.render.getCurrentRect()) while self.framesCounter < 100: self.framesCounter += 1 tracked = self.tracker.track(self.frame) if len(tracked) > 0: tracked = tracked[0] self.assertGreater( intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6) else: self.assertEqual(0, 1, 'Tracking error') self.frame = self.render.getNextFrame()
def test_lk_homography(self): self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), self.get_sample('samples/c/box.png'), noise = 0.1, speed = 1.0) frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) self.frame0 = frame.copy() self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params) isForegroundHomographyFound = False if self.p0 is not None: self.p1 = self.p0 self.gray0 = frame_gray self.gray1 = frame_gray currRect = self.render.getCurrentRect() for (x,y) in self.p0[:,0]: if isPointInRect((x,y), currRect): self.numFeaturesInRectOnStart += 1 while self.framesCounter < 200: self.framesCounter += 1 frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if self.p0 is not None: p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1) self.p1 = p2[trace_status].copy() self.p0 = self.p0[trace_status].copy() self.gray1 = frame_gray if len(self.p0) < 4: self.p0 = None continue H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0) goodPointsInRect = 0 goodPointsOutsideRect = 0 for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]): if good: if isPointInRect((x1,y1), self.render.getCurrentRect()): goodPointsInRect += 1 else: goodPointsOutsideRect += 1 if goodPointsOutsideRect < goodPointsInRect: isForegroundHomographyFound = True self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6) else: p = cv2.goodFeaturesToTrack(frame_gray, **feature_params) self.assertEqual(isForegroundHomographyFound, True)
class Cube(VideoSynthBase): def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv.imread('../data/pca_test1.jpg'), deformation = True, speed = 1) def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv.add(self.render.getNextFrame(), noise, dtype=cv.CV_8UC3)
class Cube(VideoSynthBase): def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv2.imread('../data/pca_test1.jpg'), deformation = True, speed = 1) def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
class Book(VideoSynthBase): def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv.imread('../data/graf1.png') fgr = cv.imread('../data/box.png') self.render = TestSceneRender(backGr, fgr, speed = 1) def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv.add(self.render.getNextFrame(), noise, dtype=cv.CV_8UC3)
class Book(VideoSynthBase): def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv2.imread('../data/graf1.png') fgr = cv2.imread('../data/box.png') self.render = TestSceneRender(backGr, fgr, speed = 1) def read(self, dst=None): noise = np.zeros(self.render.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) return True, cv2.add(self.render.getNextFrame(), noise, dtype=cv2.CV_8UC3)
def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv.imread(cv.samples.findFile('graf1.png')) fgr = cv.imread(cv.samples.findFile('box.png')) self.render = TestSceneRender(backGr, fgr, speed = 1)
def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv.imread(cv.samples.findFile('graf1.png')) fgr = cv.imread(cv.samples.findFile('box.png')) self.render = TestSceneRender(backGr, fgr, speed=1)
def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv.imread( cv.samples.findFile('pca_test1.jpg')), deformation=True, speed=1)
def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv.imread('../data/pca_test1.jpg'), deformation = True, speed = 1)
class camshift_test(NewOpenCVTests): framesNum = 300 frame = None selection = None drag_start = None show_backproj = False track_window = None render = None errors = 0 def prepareRender(self): self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True) def runTracker(self): framesCounter = 0 self.selection = True xmin, ymin, xmax, ymax = self.render.getCurrentRect() self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin) while True: framesCounter += 1 self.frame = self.render.getNextFrame() hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV) mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) if self.selection: x0, y0, x1, y1 = self.render.getCurrentRect() + 50 x0 -= 100 y0 -= 100 hsv_roi = hsv[y0:y1, x0:x1] mask_roi = mask[y0:y1, x0:x1] hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] ) cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX) self.hist = hist.reshape(-1) self.selection = False if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0: self.selection = None prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1) prob &= mask term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 ) _track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit) trackingRect = np.array(self.track_window) trackingRect[2] += trackingRect[0] trackingRect[3] += trackingRect[1] if intersectionRate(self.render.getCurrentRect(), trackingRect) < 0.4: self.errors += 1 if framesCounter > self.framesNum: break self.assertLess(float(self.errors) / self.framesNum, 0.4) def test_camshift(self): self.prepareRender() self.runTracker()
def test_lk_track(self): self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), self.get_sample('samples/c/box.png')) self.runTracker()
def prepareRender(self): self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True)
class lk_track_test(NewOpenCVTests): track_len = 10 detect_interval = 5 tracks = [] frame_idx = 0 render = None def test_lk_track(self): self.render = TestSceneRender( self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png')) self.runTracker() def runTracker(self): foregroundPointsNum = 0 while True: frame = self.render.getNextFrame() frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) if len(self.tracks) > 0: img0, img1 = self.prev_gray, frame_gray p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2) p1, _st, _err = cv.calcOpticalFlowPyrLK( img0, img1, p0, None, **lk_params) p0r, _st, _err = cv.calcOpticalFlowPyrLK( img1, img0, p1, None, **lk_params) d = abs(p0 - p0r).reshape(-1, 2).max(-1) good = d < 1 new_tracks = [] for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good): if not good_flag: continue tr.append([(x, y), self.frame_idx]) if len(tr) > self.track_len: del tr[0] new_tracks.append(tr) self.tracks = new_tracks if self.frame_idx % self.detect_interval == 0: goodTracksCount = 0 for tr in self.tracks: oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1]) newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1]) if isPointInRect(tr[0][0], oldRect) and isPointInRect( tr[-1][0], newRect): goodTracksCount += 1 if self.frame_idx == self.detect_interval: foregroundPointsNum = goodTracksCount fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1) fgRate = float(goodTracksCount) / (len(self.tracks) + 1) if self.frame_idx > 0: self.assertGreater(fgIndex, 0.9) self.assertGreater(fgRate, 0.2) mask = np.zeros_like(frame_gray) mask[:] = 255 for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]: cv.circle(mask, (x, y), 5, 0, -1) p = cv.goodFeaturesToTrack(frame_gray, mask=mask, **feature_params) if p is not None: for x, y in np.float32(p).reshape(-1, 2): self.tracks.append([[(x, y), self.frame_idx]]) self.frame_idx += 1 self.prev_gray = frame_gray if self.frame_idx > 300: break
def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv2.imread('../data/pca_test1.jpg'), deformation=True, speed=1)
def __init__(self, **kw): super(Cube, self).__init__(**kw) self.render = TestSceneRender(cv.imread(cv.samples.findFile('pca_test1.jpg')), deformation = True, speed = 1)
def prepareRender(self): self.render = TestSceneRender( self.get_sample('samples/python2/data/pca_test1.jpg'), deformation=True)
class camshift_test(NewOpenCVTests): framesNum = 300 frame = None selection = None drag_start = None show_backproj = False track_window = None render = None errors = 0 def prepareRender(self): self.render = TestSceneRender( self.get_sample('samples/python2/data/pca_test1.jpg'), deformation=True) def runTracker(self): framesCounter = 0 self.selection = True xmin, ymin, xmax, ymax = self.render.getCurrentRect() self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin) while True: framesCounter += 1 self.frame = self.render.getNextFrame() hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) if self.selection: x0, y0, x1, y1 = self.render.getCurrentRect() + 50 x0 -= 100 y0 -= 100 hsv_roi = hsv[y0:y1, x0:x1] mask_roi = mask[y0:y1, x0:x1] hist = cv2.calcHist([hsv_roi], [0], mask_roi, [16], [0, 180]) cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX) self.hist = hist.reshape(-1) self.selection = False if self.track_window and self.track_window[ 2] > 0 and self.track_window[3] > 0: self.selection = None prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1) prob &= mask term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) track_box, self.track_window = cv2.CamShift( prob, self.track_window, term_crit) trackingRect = np.array(self.track_window) trackingRect[2] += trackingRect[0] trackingRect[3] += trackingRect[1] if intersectionRate(self.render.getCurrentRect(), trackingRect) < 0.4: self.errors += 1 if framesCounter > self.framesNum: break self.assertLess(float(self.errors) / self.framesNum, 0.4) def test_camshift(self): self.prepareRender() self.runTracker()
def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv2.imread('../data/graf1.png') fgr = cv2.imread('../data/box.png') self.render = TestSceneRender(backGr, fgr, speed=1)
def __init__(self, **kw): super(Book, self).__init__(**kw) backGr = cv.imread('../data/graf1.png') fgr = cv.imread('../data/box.png') self.render = TestSceneRender(backGr, fgr, speed = 1)
def test_lk_track(self): self.render = TestSceneRender( self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png')) self.runTracker()
class lk_track_test(NewOpenCVTests): track_len = 10 detect_interval = 5 tracks = [] frame_idx = 0 render = None def test_lk_track(self): self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), self.get_sample('samples/c/box.png')) self.runTracker() def runTracker(self): foregroundPointsNum = 0 while True: frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if len(self.tracks) > 0: img0, img1 = self.prev_gray, frame_gray p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2) p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = abs(p0-p0r).reshape(-1, 2).max(-1) good = d < 1 new_tracks = [] for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good): if not good_flag: continue tr.append([(x, y), self.frame_idx]) if len(tr) > self.track_len: del tr[0] new_tracks.append(tr) self.tracks = new_tracks if self.frame_idx % self.detect_interval == 0: goodTracksCount = 0 for tr in self.tracks: oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1]) newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1]) if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect): goodTracksCount += 1 if self.frame_idx == self.detect_interval: foregroundPointsNum = goodTracksCount fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1) fgRate = float(goodTracksCount) / (len(self.tracks) + 1) if self.frame_idx > 0: self.assertGreater(fgIndex, 0.9) self.assertGreater(fgRate, 0.2) mask = np.zeros_like(frame_gray) mask[:] = 255 for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]: cv2.circle(mask, (x, y), 5, 0, -1) p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params) if p is not None: for x, y in np.float32(p).reshape(-1, 2): self.tracks.append([[(x, y), self.frame_idx]]) self.frame_idx += 1 self.prev_gray = frame_gray if self.frame_idx > 300: break