def predict_raw(self, net, images):
        tta_masks = []
        for tta in self.tta:
            masks_predictions = net(tta.transform_forward(images))
            masks_predictions = tta.transform_backward(masks_predictions)
            tta_masks.append(masks_predictions)

        tta_masks = torch.stack(tta_masks, dim=1)

        return tta_masks
    def predict(self, net, images):
        tta_masks = []
        for tta in self.tta:
            masks_predictions = net(tta.transform_forward(images))
            masks_predictions = torch.sigmoid(tta.transform_backward(masks_predictions))
            tta_masks.append(masks_predictions)

        tta_masks = torch.stack(tta_masks, dim=0)
        masks_predictions = torch.mean(tta_masks, dim=0)

        return masks_predictions