Esempio n. 1
0
 def create_histogram(key, title):
     if is2D:
         histograms[key] = ROOT.TH2D(key, title,
                                     len(bins_x) - 1, bins_x,
                                     len(bins_y) - 1, bins_y)
         for bin_idx in range(len(bins_x) - 1):
             histograms[key].GetXaxis().SetBinLabel(
                 bin_idx + 1, '%d <= %s < %d' %
                 (bins_x[bin_idx], x_var, bins_x[bin_idx + 1]))
         for bin_idx in range(len(bins_y) - 1):
             histograms[key].GetYaxis().SetBinLabel(
                 bin_idx + 1, '%d <= %s < %d' %
                 (bins_y[bin_idx], y_var, bins_y[bin_idx + 1]))
         histograms[key].SetXTitle(x_var)
         histograms[key].SetYTitle(y_var)
     else:
         histograms[key] = ROOT.TH1D(key, title, len(bins_x) - 1, bins_x)
         for bin_idx in range(len(bins_x) - 1):
             histograms[key].GetXaxis().SetBinLabel(
                 bin_idx + 1, '%d <= %s < %d' %
                 (bins_x[bin_idx], x_var, bins_x[bin_idx + 1]))
         histograms[key].SetXTitle(x_var)
Esempio n. 2
0
def comp_weights_2_wo_inclusive(f, samples, samples_to_stitch, split_var_1,
                                split_var_2):
    inclusive_samples = samples_to_stitch['inclusive']['samples']
    inclusive_binning_1 = samples_to_stitch['inclusive'][split_var_1]
    inclusive_binning_2 = samples_to_stitch['inclusive'][split_var_2]

    split_dict_1 = samples_to_stitch['exclusive'][split_var_1]
    split_dict_2 = samples_to_stitch['exclusive'][split_var_2]
    split_binning_1 = [sample['value'] for sample in split_dict_1]
    split_binning_2 = [sample['value'] for sample in split_dict_2]
    complete_binning_1 = list(
        sorted(
            list(
                map(
                    float,
                    set(inclusive_binning_1)
                    | set(list(
                        itertools.chain.from_iterable(split_binning_1)))))))
    complete_binning_2 = list(
        sorted(
            list(
                map(
                    float,
                    set(inclusive_binning_2)
                    | set(list(
                        itertools.chain.from_iterable(split_binning_2)))))))

    inclusive_xs = -1
    for sample_key, sample_entry in samples.items():
        if sample_key == 'sum_events': continue
        if sample_entry['process_name_specific'] == inclusive_samples[0]:
            inclusive_xs = sample_entry['xsection']
    assert (inclusive_xs > 0)

    # sum the inclusive nof events
    inclusive_nof_events = {}
    for sample_key, sample_entry in samples.items():
        if sample_key == 'sum_events': continue
        if sample_entry['process_name_specific'] in inclusive_samples:
            if not inclusive_nof_events:
                inclusive_nof_events = copy_nof_events(sample_entry)
            else:
                nof_events_keys = set(nof_key
                                      for nof_key in sample_entry['nof_events']
                                      if is_valid_event_type(nof_key))
                assert (nof_events_keys == set(inclusive_nof_events))
                for nof_key, nof_arr in sample_entry['nof_events'].items():
                    if not is_valid_event_type(nof_key):
                        continue
                    assert (len(nof_arr) == len(inclusive_nof_events[nof_key]))
                    for idx, nof in enumerate(nof_arr):
                        assert (nof > 0)
                        inclusive_nof_events[nof_key][idx] += nof

    # sum the binned nof events
    for binned_sample in split_dict_1:
        nof_events = {}
        xs = -1
        for sample_key, sample_entry in samples.items():
            if sample_key == 'sum_events': continue
            if sample_entry['process_name_specific'] in binned_sample[
                    'samples']:
                if not nof_events:
                    nof_events = copy_nof_events(sample_entry)
                    inclusive_nof_events_type = set(
                        event_type
                        for event_type in inclusive_nof_events.keys()
                        if is_valid_event_type(event_type))
                    nof_events_type = set(event_type
                                          for event_type in nof_events.keys()
                                          if is_valid_event_type(event_type))
                    assert (inclusive_nof_events_type == nof_events_type)
                else:
                    nof_events_keys = set(
                        nof_key for nof_key in sample_entry['nof_events']
                        if is_valid_event_type(nof_key))
                    assert (nof_events_keys == set(nof_events.keys()))
                    for nof_key, nof_arr in sample_entry['nof_events'].items():
                        if not is_valid_event_type(nof_key):
                            continue
                        assert (len(nof_arr) == len(nof_events[nof_key]))
                        for idx, nof in enumerate(nof_arr):
                            assert (nof > 0)
                            nof_events[nof_key][idx] += nof
                if xs < 0:
                    xs = sample_entry['xsection']
        assert (xs > 0)
        binned_sample['xsection'] = xs
        binned_sample['nof_events'] = nof_events

        lumis = {}
        for nof_key, nof_arr in binned_sample['nof_events'].items():
            lumis[nof_key] = list(
                map(lambda nof: nof / binned_sample['xsection'], nof_arr))
        binned_sample['lumis'] = lumis

    for binned_sample in split_dict_2:
        nof_events = {}
        xs = -1
        for sample_key, sample_entry in samples.items():
            if sample_key == 'sum_events': continue
            if sample_entry['process_name_specific'] in binned_sample[
                    'samples']:
                if not nof_events:
                    nof_events = copy_nof_events(sample_entry)
                    inclusive_nof_events_type = set(
                        event_type
                        for event_type in inclusive_nof_events.keys()
                        if is_valid_event_type(event_type))
                    nof_events_type = set(event_type
                                          for event_type in nof_events.keys()
                                          if is_valid_event_type(event_type))
                    assert (inclusive_nof_events_type == nof_events_type)
                else:
                    nof_events_keys = set(
                        nof_key for nof_key in sample_entry['nof_events']
                        if is_valid_event_type(nof_key))
                    assert (nof_events_keys == set(nof_events.keys()))
                    for nof_key, nof_arr in sample_entry['nof_events'].items():
                        if not is_valid_event_type(nof_key):
                            continue
                        assert (len(nof_arr) == len(nof_events[nof_key]))
                        for idx, nof in enumerate(nof_arr):
                            assert (nof > 0)
                            nof_events[nof_key][idx] += nof
                if xs < 0:
                    xs = sample_entry['xsection']
        assert (xs > 0)
        binned_sample['xsection'] = xs
        binned_sample['nof_events'] = nof_events

        lumis = {}
        for nof_key, nof_arr in binned_sample['nof_events'].items():
            lumis[nof_key] = list(
                map(lambda nof: nof / binned_sample['xsection'], nof_arr))
        binned_sample['lumis'] = lumis

    # compute integrated luminosities for the inclusive sample
    inclusive_lumis = {}
    for nof_key, nof_arr in inclusive_nof_events.items():
        inclusive_lumis[nof_key] = list(
            map(lambda nof: nof / inclusive_xs, nof_arr))

    # decide on the bin indices
    idxs_split_sample_1 = []
    idxs_split_sample_2 = []
    for binned_sample in split_dict_1:
        binned_idx = complete_binning_1.index(binned_sample['value'][0]) + 1
        binned_sample['idx'] = binned_idx
        idxs_split_sample_1.append(binned_idx)
    for binned_sample in split_dict_2:
        binned_idx = complete_binning_2.index(binned_sample['value'][0]) + 1
        binned_sample['idx'] = binned_idx
        idxs_split_sample_2.append(binned_idx)

    for binned_sample_1 in split_dict_1:
        for sample_name in binned_sample_1['samples']:
            if sample_name not in [key.GetName() for key in f.GetListOfKeys()]:
                histogram_dir_root = f.mkdir(sample_name)
            else:
                histogram_dir_root = f.Get(sample_name)
            subdir_name = '%s_v_%s_wo_inclusive' % (split_var_1, split_var_2)
            if subdir_name not in [
                    key.GetName()
                    for key in histogram_dir_root.GetListOfKeys()
            ]:
                histogram_dir = histogram_dir_root.mkdir(subdir_name)
            else:
                histogram_dir = histogram_dir_root.Get(subdir_name)
            histogram_dir.cd()

            for nof_key, lumi_arr in inclusive_lumis.items():
                if not is_valid_event_type(nof_key):
                    continue
                for idx, lumi_incl in enumerate(lumi_arr):

                    histogram_name = '%s_%d' % (nof_key, idx)
                    binning_1 = array.array('f', complete_binning_1)
                    binning_2 = array.array('f', complete_binning_2)

                    histogram = ROOT.TH2D(histogram_name, histogram_name,
                                          len(binning_1) - 1, binning_1,
                                          len(binning_2) - 1, binning_2)
                    histogram.SetDirectory(histogram_dir)
                    histogram.SetXTitle(split_var_1)
                    histogram.SetYTitle(split_var_2)

                    lumi_split_1 = -1
                    for split_idx_1 in range(1, len(binning_1)):
                        if split_idx_1 == binned_sample_1['idx']:
                            lumi_split_1 = binned_sample_1['lumis'][nof_key][
                                idx]
                            for split_idx_2 in range(1, len(binning_2)):
                                lumi_split_2 = 0.
                                for binned_sample_2 in split_dict_2:
                                    if split_idx_2 == binned_sample_2['idx']:
                                        lumi_split_2 = binned_sample_2[
                                            'lumis'][nof_key][idx]
                                        break
                                if binning_1[split_idx_1] > inclusive_binning_1[-1] or \
                                   binning_1[split_idx_1] < inclusive_binning_1[0] or \
                                   binning_2[split_idx_2] > inclusive_binning_2[-1] or \
                                   binning_2[split_idx_2] < inclusive_binning_2[0]:
                                    if lumi_split_2 == 0.:
                                        weight = 1.
                                    else:
                                        weight = lumi_split_1 / (lumi_split_1 +
                                                                 lumi_split_2)
                                else:
                                    weight = lumi_split_1 / (lumi_split_1 +
                                                             lumi_split_2)
                                assert (weight >= 0.)
                                histogram.SetBinContent(
                                    split_idx_1, split_idx_2, weight)
                        else:
                            for split_idx_2 in range(1, len(binning_2)):
                                histogram.SetBinContent(
                                    split_idx_1, split_idx_2, 0.)

                        histogram.GetXaxis().SetBinLabel(
                            split_idx_1, '%.0f <= %s < %.0f' %
                            (complete_binning_1[split_idx_1 - 1], split_var_1,
                             complete_binning_1[split_idx_1]))
                    for split_idx_2 in range(1, len(binning_2)):
                        histogram.GetYaxis().SetBinLabel(
                            split_idx_2, '%.0f <= %s < %.0f' %
                            (complete_binning_2[split_idx_2 - 1], split_var_2,
                             complete_binning_2[split_idx_2]))

                    histogram.Write()

    for binned_sample_2 in split_dict_2:
        for sample_name in binned_sample_2['samples']:
            if sample_name not in [key.GetName() for key in f.GetListOfKeys()]:
                histogram_dir_root = f.mkdir(sample_name)
            else:
                histogram_dir_root = f.Get(sample_name)
            subdir_name = '%s_v_%s_wo_inclusive' % (split_var_1, split_var_2)
            if subdir_name not in [
                    key.GetName()
                    for key in histogram_dir_root.GetListOfKeys()
            ]:
                histogram_dir = histogram_dir_root.mkdir(subdir_name)
            else:
                histogram_dir = histogram_dir_root.Get(subdir_name)
            histogram_dir.cd()

            for nof_key, lumi_arr in inclusive_lumis.items():
                if not is_valid_event_type(nof_key):
                    continue
                for idx, lumi_incl in enumerate(lumi_arr):

                    histogram_name = '%s_%d' % (nof_key, idx)
                    binning_1 = array.array('f', complete_binning_1)
                    binning_2 = array.array('f', complete_binning_2)

                    histogram = ROOT.TH2D(histogram_name, histogram_name,
                                          len(binning_1) - 1, binning_1,
                                          len(binning_2) - 1, binning_2)
                    histogram.SetDirectory(histogram_dir)
                    histogram.SetXTitle(split_var_1)
                    histogram.SetYTitle(split_var_2)

                    lumi_split_2 = -1
                    for split_idx_2 in range(1, len(binning_2)):
                        if split_idx_2 == binned_sample_2['idx']:
                            lumi_split_2 = binned_sample_2['lumis'][nof_key][
                                idx]
                            for split_idx_1 in range(1, len(binning_1)):
                                lumi_split_1 = 0.
                                for binned_sample_1 in split_dict_1:
                                    if split_idx_1 == binned_sample_1['idx']:
                                        lumi_split_1 = binned_sample_1[
                                            'lumis'][nof_key][idx]
                                        break
                                if binning_1[split_idx_1] > inclusive_binning_1[-1] or \
                                   binning_1[split_idx_1] < inclusive_binning_1[0] or \
                                   binning_2[split_idx_2] > inclusive_binning_2[-1] or \
                                   binning_2[split_idx_2] < inclusive_binning_2[0]:
                                    if lumi_split_1 == 0.:
                                        weight = 1.
                                    else:
                                        weight = lumi_split_2 / (lumi_split_1 +
                                                                 lumi_split_2)
                                else:
                                    weight = lumi_split_2 / (lumi_split_1 +
                                                             lumi_split_2)
                                histogram.SetBinContent(
                                    split_idx_1, split_idx_2, weight)
                        else:
                            for split_idx_1 in range(1, len(binning_1)):
                                histogram.SetBinContent(
                                    split_idx_1, split_idx_2, 0.)

                        histogram.GetYaxis().SetBinLabel(
                            split_idx_2, '%.0f <= %s < %.0f' %
                            (complete_binning_2[split_idx_2 - 1], split_var_2,
                             complete_binning_2[split_idx_2]))
                    for split_idx_1 in range(1, len(binning_1)):
                        histogram.GetXaxis().SetBinLabel(
                            split_idx_1, '%.0f <= %s < %.0f' %
                            (complete_binning_1[split_idx_1 - 1], split_var_1,
                             complete_binning_1[split_idx_1]))

                    histogram.Write()