Esempio n. 1
0
def Calculate(lat, t0, tref, cons, typ=0):

    const = t_getconsts(np.array([]))
    Const = [con.decode('UTF-8') for con in const[0]['name']]

    consindex = [Const.index(con.ljust(4)) for con in cons]

    # Earth equilibrium at the beginning of the run
    [v, u, _] = t_vuf('nodal', np.array(t0), consindex, lat)
    tear = 360. * (v + u)

    # Nodel factor at the middl of the run
    [_, _, f] = t_vuf('nodal', np.array(tref), consindex, lat)
    tnf = f

    tfreq = (2 * np.pi) * const[0]['freq'][consindex] / 3600.
    talpha = const[0]['name'][consindex]

    if typ == 1:

        tpspec = np.abs(const[0]['doodsonspecies'][consindex])
        tpamp = t_equilib(const[0]['freq'][consindex],
                          const[0]['doodsonamp'][consindex],
                          const[0]['doodsonspecies'][consindex], lat)
        return talpha, tpspec, tpamp, tfreq, tear, f

    else:
        return talpha, tfreq, tear, f
def extract_HC(consfile):
    """
    Extract harmonic constituents and interpolate onto points in lon,lat
    set "z" to specifiy depth for transport to velocity conversion
    set "constituents" in conlist
    Returns:
        u_re, u_im, v_re, v_im, h_re, h_im, omega, conlist
    """
    ###
    # Read the filenames from the model file
    pathfile = os.path.split(consfile)
    path = pathfile[0]

    f = Dataset(consfile, 'r')
    ds = Dataset(consfile)
    X = f.variables['lon_u'][:]
    Y = f.variables['lat_u'][:]

    rloni, rlati = np.meshgrid(X, Y)
    ###
    # Check that the constituents are in the file
    conList = []
    conIDX = []
    for ncon in range(0, len(f.variables['con'])):
        x = ''
        conList.append(''.join(
            [x + n.decode('UTF-8') for n in f.variables['con'][ncon].data]))
        conIDX.append(ncon)

    const = t_getconsts(np.array([]))
    Const = [con.decode('UTF-8') for con in const[0]['name']]

    consindex = [Const.index(con.ljust(4).upper()) for con in conList]

    tfreq = (2 * np.pi) * const[0]['freq'][consindex] / 3600.

    var = {}
    # interpolating to ROMS grid requires special care with phases!!
    #    this is subjected to parallelization via muitiprocessing.Process - do it!
    #    there is a sandbox in roms repo with a starting exercise

    Vars = ['u', 'v']
    for var0 in Vars:
        var[var0] = np.ones(shape=(len(tfreq), 4,
                                   rloni.shape[0] * rloni.shape[1])) * -1e-8
        N = -1
        for con, ncon in zip(const[0]['name'][consindex], conIDX):
            N = N + 1
            con = con.decode('UTF-8')
            print("extracting %s for %s" % (var0, con))
            Uim = f.variables[var0 + "Im"][ncon]
            Ure = f.variables[var0 + "Re"][ncon]
            h = Ure + Uim * 1j
            amp = np.abs(h)
            pha = np.arctan2(-np.imag(h), np.real(h))

            var[var0][N, 0, :] = amp.flatten()
            var[var0][N, 2, :] = pha.flatten()  #*180./np.pi

    return var, tfreq, consindex, rloni.flatten(), rlati.flatten()
Esempio n. 3
0
    def get_uv_cons(self, btypes):
        self.ifcons = {}
        for b in range(0, len(btypes)):
            Lat = []
            Lon = []
            self.ifcons[b] = {}
            if (btypes[b]['ifltype']['value']
                    == 3) or (btypes[b]['ifltype']['value'] == 5):
                file = btypes[b]['ifltype']['filename']
                var = btypes[b]['ifltype']['vars']

                for node_i in self.nnode[b]:
                    Lat.append(self.hgrid.latitude[int(node_i)])
                    Lon.append(self.hgrid.longitude[int(node_i)])

            HC, tfreq, constidx = extract_HC(file,
                                             var,
                                             Lon,
                                             Lat,
                                             logger=self.logger)
            const = t_getconsts(np.array([]))

            for i, n in enumerate(constidx):
                self.ifcons[b][const[0]['name'][n].decode('UTF-8')] = {}
                for k in var:
                    k = k.split('_')[0]
                    self.ifcons[b][const[0]['name'][n].decode('UTF-8')][
                        k + '_amp'] = HC[k][i, 0, :]
                    self.ifcons[b][const[0]['name'][n].decode('UTF-8')][
                        k + '_pha'] = np.mod(HC[k][i, 2, :], 360)
Esempio n. 4
0
def Calculate(lat, t0, cons):

    const = t_getconsts(np.array([]))
    Const= [con.decode('UTF-8') for con in const[0]['name']] 


    consindex = [Const.index(con.ljust(4)) for con in cons]

    # V: astronomical phase, U: nodal phase modulation, F: nodal amplitude correction
    v,u,f = t_vuf('nodal', np.array(t0), consindex, lat)
    tear = 360.*(v+u)
    tfreq = (2*np.pi)*const[0]['freq'][consindex]/3600.
    talpha = const[0]['name'][consindex]
    return talpha, tfreq, tear, f
Esempio n. 5
0
def Calculate(mean_lat, Tstart, Cons):
    const = t_getconsts(np.array([]))
    itemindex = []
    for k in range(0, len(Cons)):
        itemindex.append(np.where(const[0]['name'] == Cons[k].ljust(4))[0][0])

    # Earth equilibrium at the beginning of the run
    [v, u, f] = t_vuf('nodal', Tstart, itemindex, mean_lat)
    tear = 360. * (v + u)

    # Nodel factor at the middl of the run
    [v, u, f] = t_vuf('nodal', Tstart, itemindex, mean_lat)
    tnf = f

    tfreq = 2. * np.pi * const[0]['freq'][itemindex] / 3600.
    talpha = const[0]['name'][itemindex]
    return talpha, tfreq, tear, tnf
Esempio n. 6
0
def extract_HC(consfile, Vars, lim, conlist=None, min_depth=1):
    """
    Extract harmonic constituents and interpolate onto points in lon,lat
    set "z" to specifiy depth for transport to velocity conversion
    set "constituents" in conlist
    Returns:
        u_re, u_im, v_re, v_im, h_re, h_im, omega, conlist
    """
    ###
    # Read the filenames from the model file
    pathfile = os.path.split(consfile)
    path = pathfile[0]

    f = Dataset(consfile, 'r')

    ###
    # Read the grid file
    X = f.variables['Easting'][:]
    Y = f.variables['Northing'][:]

    if 'Depth' in f.variables:
        Z = f.variables['Depth'][:]
    else:
        Z = f.variables['dep'][:]

    X, Y = transform_proj(X, Y, in_espg=2193, out_espg=WGS84)
    gd = (X >= lim[0]) & (X <= lim[1]) & (Y >= lim[2]) & (Y <= lim[3]) & (
        Z >= min_depth)

    X = X[gd]
    Y = Y[gd]
    Z = Z[gd]
    ###
    # Check that the constituents are in the file
    conList = []
    conIDX = []
    if conlist is not None:
        for ncon in range(0, len(f.variables['cons'])):
            if ''.join([
                    y.decode('UTF-8') for y in f.variables['cons'][ncon]
                    if y != b' '
            ]) in conlist:
                x = ''
                conList.append(''.join([
                    x + n.decode('UTF-8') for n in f.variables['cons'][ncon]
                ]))
                conIDX.append(ncon)
    else:
        for ncon in range(0, len(f.variables['cons'])):
            x = ''
            conList.append(''.join([
                x + n.decode('UTF-8') for n in f.variables['cons'][ncon].data
            ]))
            conIDX.append(ncon)

    const = t_getconsts(np.array([]))
    Const = [con.decode('UTF-8') for con in const[0]['name']]

    consindex = [Const.index(con.ljust(4)) for con in conList]

    tfreq = (2 * np.pi) * const[0]['freq'][consindex] / 3600.

    if 'lev' in f.variables:
        levs = f.variables['lev'][:]
        Ilev = (levs == 0).nonzero()[0]
        if len(Ilev) == 0:
            print('Lev %f not found' % lev)
            Ilev = 0
        else:
            Ilev = Ilev[0]
    else:
        Ilev = 0

    var = {}
    # interpolating to ROMS grid requires special care with phases!!
    #    this is subjected to parallelization via muitiprocessing.Process - do it!
    #    there is a sandbox in roms repo with a starting exercise
    for var0 in Vars:
        var[var0] = np.ones(shape=(len(tfreq), 4, len(X))) * -1e-8
        N = -1
        for con, ncon in zip(const[0]['name'][consindex], conIDX):
            N = N + 1
            con = con.decode('UTF-8')
            print("extracting %s for %s" % (var0, con))
            amp = f.variables[var0 + "_amp"][ncon]
            pha = f.variables[var0 + "_pha"][ncon]

            if len(amp.shape) > 1:
                amp = amp[Ilev, gd]
                pha = pha[Ilev, gd]
            else:
                amp = amp[gd]
                pha = pha[gd]

            var[var0][N, 0, :] = amp
            var[var0][N, 2, :] = pha  #*180./np.pi

    return var, tfreq, consindex, X, Y, Z
Esempio n. 7
0
def create_filetide_var(filetide, t0, vari, cons, X, Y, depth, nv, do_variance,
                        lev):
    FillValue = -99999
    ncons = len(cons)
    nconstr = 4

    ncout = netCDF4.Dataset(filetide, 'w')

    # dimensions
    dcons = ncout.createDimension('cons', ncons)
    dconstr = ncout.createDimension('constr', nconstr)
    dnode = ncout.createDimension('nSCHISM_hgrid_node', len(depth))
    dnface = ncout.createDimension('nMaxSCHISM_hgrid_face_nodes', 4)
    dface = ncout.createDimension('nSCHISM_hgrid_face', nv.shape[0])

    if lev is not None:
        dlev = ncout.createDimension('lev', len(lev))

    # write variable

    vcons = ncout.createVariable('cons', 'S1', dimensions=('cons', 'constr'))
    vcons.long_name = 'Tide constituents'
    vcons.standard_name = 'tide constituents'

    vX = ncout.createVariable('Easting', np.float64, ('nSCHISM_hgrid_node', ))
    vY = ncout.createVariable('Northing', np.float64, ('nSCHISM_hgrid_node', ))
    vD = ncout.createVariable('Depth', np.float64, ('nSCHISM_hgrid_node', ))

    vN = ncout.createVariable('ele', np.float64, (
        'nSCHISM_hgrid_face',
        'nMaxSCHISM_hgrid_face_nodes',
    ))

    vfreq = ncout.createVariable('freq', np.float64, ('cons', ))
    vfreq.long_name = 'freq'

    if lev is not None:
        vlev = ncout.createVariable('lev', np.float64, ('lev', ))

    all_mean = {}
    all_exp = {}
    all_amp = {}
    all_pha = {}
    for nvar in vari:
        if nvar is 'u' or nvar is 'v':
            all_amp[nvar] = ncout.createVariable(
                nvar + '_amp', np.float64,
                ('cons', 'lev', 'nSCHISM_hgrid_node'))
            all_amp[nvar].fill_value = FillValue

            all_pha[nvar] = ncout.createVariable(nvar + '_pha', np.float64, (
                'cons',
                'lev',
                'nSCHISM_hgrid_node',
            ))
            all_pha[nvar].fill_value = FillValue
            all_pha[nvar].units = 'radians'

            if do_variance is True:
                all_mean[nvar] = ncout.createVariable(nvar + '_mean',
                                                      np.float64, (
                                                          'lev',
                                                          'nSCHISM_hgrid_node',
                                                      ))
                all_mean[nvar].fill_value = FillValue

                all_exp[nvar] = ncout.createVariable(nvar + '_var', np.float64,
                                                     (
                                                         'lev',
                                                         'nSCHISM_hgrid_node',
                                                     ))
                all_exp[nvar].fill_value = FillValue

        else:
            all_amp[nvar] = ncout.createVariable(nvar + '_amp', np.float64, (
                'cons',
                'nSCHISM_hgrid_node',
            ))
            all_amp[nvar].fill_value = FillValue

            all_pha[nvar] = ncout.createVariable(nvar + '_pha', np.float64, (
                'cons',
                'nSCHISM_hgrid_node',
            ))
            all_pha[nvar].fill_value = FillValue
            all_pha[nvar].units = 'radians'

            if do_variance is True:
                all_mean[nvar] = ncout.createVariable(nvar + '_mean',
                                                      np.float64,
                                                      ('nSCHISM_hgrid_node', ))
                all_mean[nvar].fill_value = FillValue

                all_exp[nvar] = ncout.createVariable(nvar + '_var', np.float64,
                                                     ('nSCHISM_hgrid_node', ))
                all_exp[nvar].fill_value = FillValue

    for j in range(0, ncons):
        for k in range(0, len(cons[j])):
            vcons[j, k] = cons[j][k]

# write V0, freq

    const, sat, cshallow = t_getconsts(np.array([t0]))
    freq = np.zeros(shape=(len(cons), 1))
    i = 0
    for ic in const['name']:
        if ic in cons:
            IDX = np.nonzero(ic == cons)[0][0]
            freq[IDX] = 2 * np.pi * 24 * const['freq'][i]
        i = i + 1

    vfreq[:] = freq
    # for nvar in vari:
    #     all_amp[nvar][:]=np.zeros([len(depth),ncons])
    #     all_pha[nvar][:]=np.zeros([len(depth),ncons])

    vX[:] = X
    vY[:] = Y
    vD[:] = depth
    vN[:] = nv

    if lev is not None:
        vlev[:] = np.abs(lev)

    return ncout, all_amp, all_pha, all_mean, all_exp
Esempio n. 8
0
def extract_HC(modfile, Vars, lon, lat, conlist=None, logger=None):
    """
    Extract harmonic constituents and interpolate onto points in lon,lat
    set "z" to specifiy depth for transport to velocity conversion
    set "constituents" in conlist
    Returns:
        u_re, u_im, v_re, v_im, h_re, h_im, omega, conlist
    """

    ###
    lon = np.asarray(lon)
    lat = np.asarray(lat)

    # Make sure the longitude is between 0 and 360
    lon = np.mod(lon, 360.0)

    ###
    # Read the filenames from the model file
    pathfile = os.path.split(modfile)
    path = pathfile[0]

    f = Dataset(modfile, 'r')

    ###
    # Read the grid file
    X = np.mod(f.variables['lon'][:], 360)
    Y = f.variables['lat'][:]
    if len(X.shape) == 1:
        X, Y = np.meshgrid(X, Y)

    if 'dep' in f.variables:
        depth = f.variables['dep'][:]
    else:
        depth = np.zeros((X.shape))

    ###
    # Check that the constituents are in the file
    conList = []
    conIDX = []
    if conlist is not None:
        for ncon in range(0, len(f.variables['cons'])):
            if f.variables['cons'][ncon][:] in conlist:
                x = ''
                conList.append(''.join(
                    [x + n for n in f.variables['cons'][ncon]]))
                conIDX.append(ncon)
    else:
        for ncon in range(0, len(f.variables['cons'])):
            x = ''
            try:
                conList.append(''.join([
                    x + n.decode('UTF-8')
                    for n in f.variables['cons'][ncon].data
                ]))
            except:
                conList.append(''.join(
                    [x + n for n in f.variables['cons'][ncon]]))
            conIDX.append(ncon)

    const = t_getconsts(np.array([]))
    Const = [con.decode('UTF-8') for con in const[0]['name']]
    consindex = [Const.index(con.ljust(4).upper()) for con in conList]

    tfreq = (2 * np.pi) * const[0]['freq'][consindex] / 3600.

    ###
    # Now go through and read the data for each

    maskr = []

    Vars = list(set([x.replace('_amp', '').replace('_pha', '') for x in Vars]))
    var = {}
    # interpolating to ROMS grid requires special care with phases!!
    #    this is subjected to parallelization via muitiprocessing.Process - do it!
    #    there is a sandbox in roms repo with a starting exercise
    for var0 in Vars:
        var[var0] = np.ones(shape=(len(tfreq), 4, len(lon))) * -1e-8
        N = -1

        for con, ncon in zip(const[0]['name'][consindex], conIDX):
            N = N + 1
            con = con.decode('UTF-8')
            logger.info("Interpolating %s for %s" % (var0, con))
            var[var0][N, 0, :] = extrapolate_amp(
                X, Y, lon, lat, maskr, f.variables[var0 + "_amp"][ncon, :, :])
            var[var0][N, 2, :] = extrapolate_pha(
                X, Y, lon, lat, maskr,
                f.variables[var0 + "_pha"][ncon, :, :]) * 180. / np.pi

    return var, tfreq, consindex