Esempio n. 1
0
 def __init__(self, config):
     """
     Constructor for a new hypothesis by using the student t test. It includes the value,
     the deviation and the number of samples.
     :param config: Configuration from yaml file
     """
     self._true_mean = Config.get_param(config, 'true_mean')
     if Config.has_key(config, 'std_deviation'):
         self._std_deviation = Config.get_param(config, 'std_deviation')
     else:
         self._std_deviation = None
     self._significance_level = Config.get_param(config,
                                                 'significance_level')
    def __init__(self, config):
        """
        Constructor for a new nominal value hypothesis. It includes the value and the deviation(s)
        :param config: Configuration from yaml file
        """
        SingleValueHypothesisCheck.__init__(self)
        self._value_check = NominalValueFactory.create_nominal_value(config)
        self._deviation_checks = []

        if not Config.has_key(config, 'deviation'):
            return

        for deviation_config in Config.get_param(config, 'deviation'):
            self._deviation_checks.append(
                NominalValueFactory.create_nominal_value(deviation_config))
    def __init__(self, config):
        """
        Constructor to create StdDeviationFilter object. It reads and setup
        the buffer (defined or not defined buffer size)
        :param config: Configuration from yaml file
        """
        DeviationFilter.__init__(self)
        from math import sqrt
        self.sqrt = sqrt

        if Config.has_key(config, 'window_size'):
            from collections import deque
            self.window_size = Config.get_param(config, 'window_size')
            self._buffer = deque(maxlen=self.window_size)
            self.reset = self.reset_buffered
        else:
            self._buffer = []
            self.reset = self.reset_unbuffered
 def __init__(self, config):
     """
     Constructor for exponentially weighted moving average (EWMA) filter object.
     Applies new values weighted to history.
     :param config: Configuration from yaml file
     """
     ValueFilter.__init__(self)
     self._decay_rate = Config.get_param(config, 'decay_rate')
     if Config.has_key(config, 'window_size'):
         from collections import deque
         self.window_size = Config.get_param(config, 'window_size')
         self._ring_buffer = deque(maxlen=self.window_size)
         self.update = self.update_buffered
         self.get_value = self.get_value_buffered
         self.reset = self.reset_buffered
     else:
         self._current_value = None
         self.update = self.update_unbuffered
         self.get_value = self.get_value_unbuffered
         self.reset = self.reset_unbuffered
    def __init__(self, config):
        """
        Constructor to create min-max deviation object. It reads and setup
        the buffer (defined or not defined buffer size)
        :param config: Configuration from yaml file
        """
        DeviationFilter.__init__(self)

        if Config.has_key(config, 'window_size'):
            from collections import deque
            self.window_size = Config.get_param(config, 'window_size')
            self._ring_buffer = deque(maxlen=self.window_size)
            self.update = self.update_buffered
            self.get_deviation = self.get_deviation_buffered
            self.reset = self.reset_buffered
        else:
            self._min = float("nan")
            self._max = float("nan")
            self.update = self.update_unbuffered
            self.get_deviation = self.get_deviation_unbuffered
            self.reset = self.reset_unbuffered
Esempio n. 6
0
    for node in YamlHelper.get_param(configs, 'nodes'):
        name = YamlHelper.get_param(node, 'name')
        sub_topic = YamlHelper.get_param(node, 'sub_topic', [])
        pub_topic = YamlHelper.get_param(node, 'pub_topic', [])

        model_configuration.nodes.append(
            node_configuration(name=str(name),
                               pub_topic=list(pub_topic),
                               sub_topic=list(sub_topic)))

    rospy.loginfo("tug_diagnosis_initialization: load observers")
    for observation in YamlHelper.get_param(configs, 'observations'):
        type = YamlHelper.get_param(observation, 'type')

        resource = []
        if YamlHelper.has_key(observation, 'nodes'):
            resource = YamlHelper.get_param(observation, 'nodes', [])
        elif YamlHelper.has_key(observation, 'topics'):
            resource = YamlHelper.get_param(observation, 'topics', [])

        model_configuration.observers.append(
            observer_configuration(type=str(type), resource=list(resource)))

    rospy.loginfo(
        str(len(model_configuration.nodes)) + " nodes and " +
        str(len(model_configuration.observers)) + " observers loaded")

    rospy.loginfo("tug_diagnosis_initialization: waiting for service")
    rospy.wait_for_service('diagnosis_configuration_change')
    try:
        diagnosis_changer_srv = rospy.ServiceProxy(