Esempio n. 1
0
def run_Radar():
    print "Spots version {}".format(basic.ADSB.VERSION)

    sys.stderr = open("spots.err", 'w')
    logger = logging.getLogger('spots')
    logger.setLevel(logging.DEBUG)
    fh = logging.handlers.RotatingFileHandler(
        filename=basic.ADSB.cfg_log_file,
        mode='w',
        maxBytes=basic.ADSB.cfg_log_max_bytes,
        backupCount=basic.ADSB.cfg_log_backup_count)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - (%(threadName)-10s) - %(message)s'
    )
    fh.setFormatter(formatter)
    logger.addHandler(fh)

    fh.setLevel(logging.DEBUG)

    logger.info("Spots version: {}".format(basic.ADSB.VERSION))

    if basic.ADSB.cfg_read_from_file:
        tuner1090 = tuner.Tuner(filename=basic.ADSB.cfg_file_name)
    else:
        tuner1090 = tuner.Tuner()

    tuner1090.start()

    radar = Radar()
    radar.start()

    host = basic.ADSB.cfg_server_address
    port = basic.ADSB.cfg_server_port

    spots_server = server.SpotsServer((host, port), radar)
    spots_server.start()

    logger.info("Spots message server running, listening on {}:{}".format(
        host, port))

    tuner1090.read(radar.tuner_read)  # This is the main loop and main thread

    spots_server.die()
Esempio n. 2
0
    def __init__(self, width, height, A4=432, tolerance=0.1, accuracy=5):
        self.__tuner = tuner.Tuner(A4, tolerance, accuracy)
        self.__master = Tk()

        screen_w = self.__master.winfo_screenwidth()
        screen_h = self.__master.winfo_screenheight()

        self.__width = width
        self.__height = height

        pos = "+{}+{}".format(screen_w / 2 - self.__width / 2,
                              screen_h / 2 - self.__height / 2)

        self.__master.title("Chromatic tuner")

        self.__master.geometry(pos)
        self.__master.resizable(False, False)
        self.__accuracy = accuracy

        self.__info_content = StringVar()
        self.__text_info = Label(self.__master,
                                 textvariable=self.__info_content)

        self.__canvas = Canvas(self.__master,
                               width=self.__width,
                               height=self.__height)

        image = Image.open("../assets/gears.png")
        image = image.resize((35, 35), Image.ANTIALIAS)
        self.image = ImageTk.PhotoImage(image)

        self.button = Button(self.__master, command=self.settings)
        self.button.config(image=self.image)
        self.button.grid(row=0, column=0, sticky=W)

        self.__c_freq = StringVar()
        self.updateCfreq()

        Label(self.__master,
              textvariable=self.__c_freq,
              font="Helvetica 16 bold").grid(row=0, column=0)

        self.__canvas.grid(row=1, column=0)
        self.__text_info.grid(row=2, column=0)

        self.__needle = needle.Needle(self.__master, self.__canvas, width,
                                      height)
        self.drawBar()
        self.listen_t = threading.Thread(target=self.read, args=())
        self.listen_t.daemon = True
        self.listen_t.start()
Esempio n. 3
0
    def __init__(self, training_labels, training, validation_labels,
                 validation, clabel):
        '''
            Initialization of the problem through training data.
            labels      is a list of 0,1 that recognize each sample in the
                        training, where 1 is a positive example for the class
            training    is a dictionary
            clabel         name of classifier
        '''
        # Added a label field, contains the name of the dataset
        self.clabel = clabel
        self.t_labels = training_labels
        self.training = training
        self.v_labels = validation_labels
        self.validation = validation
        #        self.tuning_log = None

        # Ranges for parameter C and gamma
        self.n_iterations = 1
        self.C_range = [pow(2, -5), pow(2, 15)]  #max pow(2,15)
        self.C_step = float(self.C_range[1] -
                            self.C_range[0]) / self.n_iterations
        self.gamma_range = [pow(2, -15), pow(2, 3)]  #max pow(2,3)
        self.gamma_step = float(self.gamma_range[1] -
                                self.gamma_range[0]) / self.n_iterations
        self.finer_range = {'C': 100, 'gamma': 1}

        ## SVM initialization
        # To disable output messages from the library
        svmc.svm_set_quiet()
        # Definition of standard parameters for SVM
        self.parameters = svm_parameter(svm_type = C_SVC, kernel_type = RBF, \
                C = 1, gamma = 0, probability = 1)
        # Definition of the problem wrt training examples
        self.problem = svm_problem(self.t_labels, self.training)

        # Initializing the external tuner
        self.tune = tuner.Tuner(self)
Esempio n. 4
0
	'reqCurrentStation'		: 9,
	'reqChangeBand'  		: 10,
	'reqSetHomeAddress'		: 11,
	'reqSetBrightness' 		: 12,
	'reqSetColor'	   		: 13,
	'reqSetContrast'  		: 14,
	'reqSetAddress'	   		: 15,
	'reqGetRecentDestinations': 16
}

messages = []
messages.append(json.dumps({'time': datetime.datetime.utcnow().isoformat() + 'Z'}))


Media = media.Media('media') 
Tuner = tuner.Tuner('tuner') 
Navi = navigation.Navigation('navi')
Settings = settings.Settings('Settings')

def parseMsg(msg):
	try:
		messageObj = json.loads(msg)
	except ValueError:
		LOG.error('Cannot parse message to JSON! ')
		return False
	except:
		LOG.error('Unexpected error: ' + sys.exc_info()[0]); 
		return False
	return messageObj

async def consumer (message):