Esempio n. 1
0
def _test_features(config, feature_extractor_creator, filename, write_features):
    feature_extractor = feature_extractor_creator(config)
    passage = load_passage(filename, annotate=feature_extractor_creator.annotated)
    textutil.annotate(passage, as_array=True, as_extra=False, vocab=config.vocab())
    config.set_format(passage.extra.get("format") or "ucca")
    oracle = Oracle(passage)
    state = State(passage)
    actions = Actions()
    for key, param in feature_extractor.params.items():
        if not param.numeric:
            param.dropout = 0
            feature_extractor.init_param(key)
    features = [feature_extractor.init_features(state)]
    while True:
        extract_features(feature_extractor, state, features)
        action = min(oracle.get_actions(state, actions).values(), key=str)
        state.transition(action)
        if state.need_label:
            extract_features(feature_extractor, state, features)
            label, _ = oracle.get_label(state, action)
            state.label_node(label)
        if state.finished:
            break
    features = ["%s %s\n" % i for f in features if f for i in (sorted(f.items()) + [("", "")])]
    compare_file = os.path.join("test_files", "features", "-".join((basename(filename), str(feature_extractor_creator)))
                                + ".txt")
    if write_features:
        with open(compare_file, "w", encoding="utf-8") as f:
            f.writelines(features)
    with open(compare_file, encoding="utf-8") as f:
        assert f.readlines() == features, compare_file
Esempio n. 2
0
def gen_actions(passage):
    oracle = Oracle(passage)
    state = State(passage)
    actions = Actions()
    while True:
        action = min(oracle.get_actions(state, actions).values(), key=str)
        state.transition(action)
        s = str(action)
        if state.need_label:
            label, _ = oracle.get_label(state, action)
            state.label_node(label)
            s += " " + str(label)
        yield s
        if state.finished:
            break
Esempio n. 3
0
class PassageParser(AbstractParser):
    """ Parser for a single passage, has a state and optionally an oracle """
    def __init__(self, passage, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.passage = self.out = passage
        self.format = self.passage.extra.get("format") if self.training or self.evaluation else \
            sorted(set.intersection(*map(set, filter(None, (self.model.formats, self.config.args.formats)))) or
                   self.model.formats)[0]
        if self.training and self.config.args.verify:
            errors = list(validate(self.passage))
            assert not errors, errors
        self.in_format = self.format or "ucca"
        self.out_format = "ucca" if self.format in (None, "text") else self.format
        if self.config.args.use_bert and self.config.args.bert_multilingual is not None:
            self.lang = self.passage.attrib.get("lang")
            assert self.lang, "Attribute 'lang' is required per passage when using multilingual BERT"
        else:
            self.lang = self.passage.attrib.get("lang", self.config.args.lang)
        # Used in verify_passage to optionally ignore a mismatch in linkage nodes:
        self.ignore_node = None if self.config.args.linkage else lambda n: n.tag == layer1.NodeTags.Linkage
        self.state_hash_history = set()
        self.state = self.oracle = self.eval_type = None

    def init(self):
        self.config.set_format(self.in_format)
        WIKIFIER.enabled = self.config.args.wikification
        self.state = State(self.passage)
        # Passage is considered labeled if there are any edges or node labels in it
        edges, node_labels = map(any, zip(*[(n.outgoing, n.attrib.get(LABEL_ATTRIB))
                                            for n in self.passage.layer(layer1.LAYER_ID).all]))
        self.oracle = Oracle(self.passage) if self.training or self.config.args.verify or (
                (self.config.args.verbose > 1 or self.config.args.use_gold_node_labels or self.config.args.action_stats)
                and (edges or node_labels)) else None
        for model in self.models:
            model.init_model(self.config.format, lang=self.lang if self.config.args.multilingual else None)
            if ClassifierProperty.require_init_features in model.classifier_properties:
                model.init_features(self.state, self.training)

    def parse(self, display=True, write=False, accuracies=None):
        self.init()
        passage_id = self.passage.ID
        try:
            with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
                executor.submit(self.parse_internal).result(self.config.args.timeout)
            status = "(%d tokens/s)" % self.tokens_per_second()
        except ParserException as e:
            if self.training:
                raise
            self.config.log("%s %s: %s" % (self.config.passage_word, passage_id, e))
            status = "(failed)"
        except concurrent.futures.TimeoutError:
            self.config.log("%s %s: timeout (%fs)" % (self.config.passage_word, passage_id, self.config.args.timeout))
            status = "(timeout)"
        return self.finish(status, display=display, write=write, accuracies=accuracies)

    def parse_internal(self):
        """
        Internal method to parse a single passage.
        If training, use oracle to train on given passages. Otherwise just parse with classifier.
        """
        self.config.print("  initial state: %s" % self.state)
        while True:
            if self.config.args.check_loops:
                self.check_loop()
            self.label_node()  # In case root node needs labeling
            true_actions = self.get_true_actions()
            action, predicted_action = self.choose(true_actions)
            self.state.transition(action)
            need_label, label, predicted_label, true_label = self.label_node(action)
            if self.config.args.action_stats:
                try:
                    with open(self.config.args.action_stats, "a") as f:
                        print(",".join(map(str, [predicted_action, action] + list(true_actions.values()))), file=f)
                except OSError:
                    pass
            self.config.print(lambda: "\n".join(["  predicted: %-15s true: %-15s taken: %-15s %s" % (
                predicted_action, "|".join(map(str, true_actions.values())), action, self.state) if self.oracle else
                                          "  action: %-15s %s" % (action, self.state)] + (
                ["  predicted label: %-9s true label: %s" % (predicted_label, true_label) if self.oracle and not
                 self.config.args.use_gold_node_labels else "  label: %s" % label] if need_label else []) + [
                "    " + l for l in self.state.log]))
            if self.state.finished:
                return  # action is Finish (or early update is triggered)

    def get_true_actions(self):
        true_actions = {}
        if self.oracle:
            try:
                true_actions = self.oracle.get_actions(self.state, self.model.actions, create=self.training)
            except (AttributeError, AssertionError) as e:
                if self.training:
                    raise ParserException("Error in getting action from oracle during training") from e
        return true_actions

    def get_true_label(self, node):
        try:
            return self.oracle.get_label(self.state, node) if self.oracle else (None, None)
        except AssertionError as e:
            if self.training:
                raise ParserException("Error in getting label from oracle during training") from e
            return None, None

    def label_node(self, action=None):
        true_label = label = predicted_label = None
        need_label = self.state.need_label  # Label action that requires a choice of label
        if need_label:
            true_label, raw_true_label = self.get_true_label(action or need_label)
            label, predicted_label = self.choose(true_label, NODE_LABEL_KEY, "node label")
            self.state.label_node(raw_true_label if label == true_label else label)
        return need_label, label, predicted_label, true_label

    def choose(self, true, axis=None, name="action"):
        if axis is None:
            axis = self.model.axis
        elif axis == NODE_LABEL_KEY and self.config.args.use_gold_node_labels:
            return true, true
        labels = self.model.classifier.labels[axis]
        if axis == NODE_LABEL_KEY:
            true_keys = (labels[true],) if self.oracle else ()  # Must be before score()
            is_valid = self.state.is_valid_label
        else:
            true_keys = None
            is_valid = self.state.is_valid_action
        scores, features = self.model.score(self.state, axis)
        for model in self.models[1:]:  # Ensemble if given more than one model; align label order and add scores
            label_scores = dict(zip(model.classifier.labels[axis].all, self.model.score(self.state, axis)[0]))
            scores += [label_scores.get(a, 0) for a in labels.all]  # Product of Experts, assuming log(softmax)
        self.config.print(lambda: "  %s scores: %s" % (name, tuple(zip(labels.all, scores))), level=4)
        try:
            label = pred = self.predict(scores, labels.all, is_valid)
        except StopIteration as e:
            raise ParserException("No valid %s available\n%s" % (name, self.oracle.log if self.oracle else "")) from e
        label, is_correct, true_keys, true_values = self.correct(axis, label, pred, scores, true, true_keys)
        if self.training:
            if not (is_correct and ClassifierProperty.update_only_on_error in self.model.classifier_properties):
                assert not self.model.is_finalized, "Updating finalized model"
                self.model.classifier.update(
                    features, axis=axis, true=true_keys, pred=labels[pred] if axis == NODE_LABEL_KEY else pred.id,
                    importance=[self.config.args.swap_importance if a.is_swap else 1 for a in true_values] or None)
            if not is_correct and self.config.args.early_update:
                self.state.finished = True
        for model in self.models:
            model.classifier.finished_step(self.training)
            if axis != NODE_LABEL_KEY:
                model.classifier.transition(label, axis=axis)
        return label, pred

    def correct(self, axis, label, pred, scores, true, true_keys):
        true_values = is_correct = ()
        if axis == NODE_LABEL_KEY:
            if self.oracle:
                is_correct = (label == true)
                if is_correct:
                    self.correct_label_count += 1
                elif self.training:
                    label = true
            self.label_count += 1
        else:  # action
            true_keys, true_values = map(list, zip(*true.items())) if true else (None, None)
            label = true.get(pred.id)
            is_correct = (label is not None)
            if is_correct:
                self.correct_action_count += 1
            else:
                label = true_values[scores[true_keys].argmax()] if self.training else pred
            self.action_count += 1
        return label, is_correct, true_keys, true_values

    @staticmethod
    def predict(scores, values, is_valid=None):
        """
        Choose action/label based on classifier
        Usually the best action/label is valid, so max is enough to choose it in O(n) time
        Otherwise, sorts all the other scores to choose the best valid one in O(n lg n)
        :return: valid action/label with maximum probability according to classifier
        """
        return next(filter(is_valid, (values[i] for i in PassageParser.generate_descending(scores))))

    @staticmethod
    def generate_descending(scores):
        yield scores.argmax()
        yield from scores.argsort()[::-1]  # Contains the max, but otherwise items might be missed (different order)

    def finish(self, status, display=True, write=False, accuracies=None):
        self.model.classifier.finished_item(self.training)
        for model in self.models[1:]:
            model.classifier.finished_item(renew=False)  # So that dynet.renew_cg happens only once
        if not self.training or self.config.args.verify:
            self.out = self.state.create_passage(verify=self.config.args.verify, format=self.out_format)
        if write:
            for out_format in self.config.args.formats or [self.out_format]:
                if self.config.args.normalize and out_format == "ucca":
                    normalize(self.out)
                ioutil.write_passage(self.out, output_format=out_format, binary=out_format == "pickle",
                                     outdir=self.config.args.outdir, prefix=self.config.args.prefix,
                                     converter=get_output_converter(out_format), verbose=self.config.args.verbose,
                                     append=self.config.args.join, basename=self.config.args.join)
        if self.oracle and self.config.args.verify:
            self.verify(self.out, self.passage)
        ret = (self.out,)
        if self.evaluation:
            ret += (self.evaluate(self.evaluation),)
            status = "%-14s %s F1=%.3f" % (status, self.eval_type, self.f1)
        if display:
            self.config.print("%s%.3fs %s" % (self.accuracy_str, self.duration, status), level=1)
        if accuracies is not None:
            accuracies[self.passage.ID] = self.correct_action_count / self.action_count if self.action_count else 0
        return ret

    @property
    def accuracy_str(self):
        if self.oracle and self.action_count:
            accuracy_str = "a=%-14s" % percents_str(self.correct_action_count, self.action_count)
            if self.label_count:
                accuracy_str += " l=%-14s" % percents_str(self.correct_label_count, self.label_count)
            return "%-33s" % accuracy_str
        return ""

    def evaluate(self, mode=ParseMode.test):
        if self.format:
            self.config.print("Converting to %s and evaluating..." % self.format)
        self.eval_type = UNLABELED if self.config.is_unlabeled(self.in_format) else LABELED
        evaluator = EVALUATORS.get(self.format, evaluate_ucca)
        score = evaluator(self.out, self.passage, converter=get_output_converter(self.format),
                          verbose=self.out and self.config.args.verbose > 3,
                          constructions=self.config.args.constructions,
                          eval_types=(self.eval_type,) if mode is ParseMode.dev else (LABELED, UNLABELED))
        self.f1 = average_f1(score, self.eval_type)
        score.lang = self.lang
        return score

    def check_loop(self):
        """
        Check if the current state has already occurred, indicating a loop
        """
        h = hash(self.state)
        assert h not in self.state_hash_history, \
            "\n".join(["Transition loop", self.state.str("\n")] + [self.oracle.str("\n")] if self.oracle else ())
        self.state_hash_history.add(h)

    def verify(self, guessed, ref):
        """
        Compare predicted passage to true passage and raise an exception if they differ
        :param ref: true passage
        :param guessed: predicted passage to compare
        """
        assert ref.equals(guessed, ignore_node=self.ignore_node), \
            "Failed to produce true passage" + (diffutil.diff_passages(ref, guessed) if self.training else "")

    @property
    def num_tokens(self):
        return len(set(self.state.terminals).difference(self.state.buffer))  # To count even incomplete parses

    @num_tokens.setter
    def num_tokens(self, _):
        pass
Esempio n. 4
0
class PassageParser(AbstractParser):
    """ Parser for a single passage, has a state and optionally an oracle """
    def __init__(self, passage, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.passage = self.out = passage
        self.format = self.passage.extra.get("format") if self.training or self.evaluation else \
            sorted(set.intersection(*map(set, filter(None, (self.model.formats, self.config.args.formats)))) or
                   self.model.formats)[0]
        if self.training and self.config.args.verify:
            errors = list(validate(self.passage))
            assert not errors, errors
        self.in_format = self.format or "ucca"
        self.out_format = "ucca" if self.format in (None, "text") else self.format
        self.lang = self.passage.attrib.get("lang", self.config.args.lang)
        # Used in verify_passage to optionally ignore a mismatch in linkage nodes:
        self.ignore_node = None if self.config.args.linkage else lambda n: n.tag == layer1.NodeTags.Linkage
        self.state_hash_history = set()
        self.state = self.oracle = self.eval_type = None

    def init(self):
        self.config.set_format(self.in_format)
        WIKIFIER.enabled = self.config.args.wikification
        self.state = State(self.passage)
        # Passage is considered labeled if there are any edges or node labels in it
        edges, node_labels = map(any, zip(*[(n.outgoing, n.attrib.get(LABEL_ATTRIB))
                                            for n in self.passage.layer(layer1.LAYER_ID).all]))
        self.oracle = Oracle(self.passage) if self.training or self.config.args.verify or (
                (self.config.args.verbose > 1 or self.config.args.use_gold_node_labels or self.config.args.action_stats)
                and (edges or node_labels)) else None
        for model in self.models:
            model.init_model(self.config.format, lang=self.lang if self.config.args.multilingual else None)
            if ClassifierProperty.require_init_features in model.classifier_properties:
                model.init_features(self.state, self.training)

    def parse(self, display=True, write=False, accuracies=None):
        self.init()
        passage_id = self.passage.ID
        try:
            with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
                executor.submit(self.parse_internal).result(self.config.args.timeout)
            status = "(%d tokens/s)" % self.tokens_per_second()
        except ParserException as e:
            if self.training:
                raise
            self.config.log("%s %s: %s" % (self.config.passage_word, passage_id, e))
            status = "(failed)"
        except concurrent.futures.TimeoutError:
            self.config.log("%s %s: timeout (%fs)" % (self.config.passage_word, passage_id, self.config.args.timeout))
            status = "(timeout)"
        return self.finish(status, display=display, write=write, accuracies=accuracies)

    def parse_internal(self):
        """
        Internal method to parse a single passage.
        If training, use oracle to train on given passages. Otherwise just parse with classifier.
        """
        self.config.print("  initial state: %s" % self.state)
        while True:
            if self.config.args.check_loops:
                self.check_loop()
            self.label_node()  # In case root node needs labeling
            true_actions = self.get_true_actions()
            action, predicted_action = self.choose(true_actions)
            self.state.transition(action)
            need_label, label, predicted_label, true_label = self.label_node(action)
            if self.config.args.action_stats:
                try:
                    with open(self.config.args.action_stats, "a") as f:
                        print(",".join(map(str, [predicted_action, action] + list(true_actions.values()))), file=f)
                except OSError:
                    pass
            self.config.print(lambda: "\n".join(["  predicted: %-15s true: %-15s taken: %-15s %s" % (
                predicted_action, "|".join(map(str, true_actions.values())), action, self.state) if self.oracle else
                                          "  action: %-15s %s" % (action, self.state)] + (
                ["  predicted label: %-9s true label: %s" % (predicted_label, true_label) if self.oracle and not
                 self.config.args.use_gold_node_labels else "  label: %s" % label] if need_label else []) + [
                "    " + l for l in self.state.log]))
            if self.state.finished:
                return  # action is Finish (or early update is triggered)

    def get_true_actions(self):
        true_actions = {}
        if self.oracle:
            try:
                true_actions = self.oracle.get_actions(self.state, self.model.actions, create=self.training)
            except (AttributeError, AssertionError) as e:
                if self.training:
                    raise ParserException("Error in getting action from oracle during training") from e
        return true_actions

    def get_true_label(self, node):
        try:
            return self.oracle.get_label(self.state, node) if self.oracle else (None, None)
        except AssertionError as e:
            if self.training:
                raise ParserException("Error in getting label from oracle during training") from e
            return None, None

    def label_node(self, action=None):
        true_label = label = predicted_label = None
        need_label = self.state.need_label  # Label action that requires a choice of label
        if need_label:
            true_label, raw_true_label = self.get_true_label(action or need_label)
            label, predicted_label = self.choose(true_label, NODE_LABEL_KEY, "node label")
            self.state.label_node(raw_true_label if label == true_label else label)
        return need_label, label, predicted_label, true_label

    def choose(self, true, axis=None, name="action"):
        if axis is None:
            axis = self.model.axis
        elif axis == NODE_LABEL_KEY and self.config.args.use_gold_node_labels:
            return true, true
        labels = self.model.classifier.labels[axis]
        if axis == NODE_LABEL_KEY:
            true_keys = (labels[true],) if self.oracle else ()  # Must be before score()
            is_valid = self.state.is_valid_label
        else:
            true_keys = None
            is_valid = self.state.is_valid_action
        scores, features = self.model.score(self.state, axis)
        for model in self.models[1:]:  # Ensemble if given more than one model; align label order and add scores
            label_scores = dict(zip(model.classifier.labels[axis].all, self.model.score(self.state, axis)[0]))
            scores += [label_scores.get(a, 0) for a in labels.all]  # Product of Experts, assuming log(softmax)
        self.config.print(lambda: "  %s scores: %s" % (name, tuple(zip(labels.all, scores))), level=4)
        try:
            label = pred = self.predict(scores, labels.all, is_valid)
        except StopIteration as e:
            raise ParserException("No valid %s available\n%s" % (name, self.oracle.log if self.oracle else "")) from e
        label, is_correct, true_keys, true_values = self.correct(axis, label, pred, scores, true, true_keys)
        if self.training:
            if not (is_correct and ClassifierProperty.update_only_on_error in self.model.classifier_properties):
                assert not self.model.is_finalized, "Updating finalized model"
                self.model.classifier.update(
                    features, axis=axis, true=true_keys, pred=labels[pred] if axis == NODE_LABEL_KEY else pred.id,
                    importance=[self.config.args.swap_importance if a.is_swap else 1 for a in true_values] or None)
            if not is_correct and self.config.args.early_update:
                self.state.finished = True
        for model in self.models:
            model.classifier.finished_step(self.training)
            if axis != NODE_LABEL_KEY:
                model.classifier.transition(label, axis=axis)
        return label, pred

    def correct(self, axis, label, pred, scores, true, true_keys):
        true_values = is_correct = ()
        if axis == NODE_LABEL_KEY:
            if self.oracle:
                is_correct = (label == true)
                if is_correct:
                    self.correct_label_count += 1
                elif self.training:
                    label = true
            self.label_count += 1
        else:  # action
            true_keys, true_values = map(list, zip(*true.items())) if true else (None, None)
            label = true.get(pred.id)
            is_correct = (label is not None)
            if is_correct:
                self.correct_action_count += 1
            else:
                label = true_values[scores[true_keys].argmax()] if self.training else pred
            self.action_count += 1
        return label, is_correct, true_keys, true_values

    @staticmethod
    def predict(scores, values, is_valid=None):
        """
        Choose action/label based on classifier
        Usually the best action/label is valid, so max is enough to choose it in O(n) time
        Otherwise, sorts all the other scores to choose the best valid one in O(n lg n)
        :return: valid action/label with maximum probability according to classifier
        """
        return next(filter(is_valid, (values[i] for i in PassageParser.generate_descending(scores))))

    @staticmethod
    def generate_descending(scores):
        yield scores.argmax()
        yield from scores.argsort()[::-1]  # Contains the max, but otherwise items might be missed (different order)

    def finish(self, status, display=True, write=False, accuracies=None):
        self.model.classifier.finished_item(self.training)
        for model in self.models[1:]:
            model.classifier.finished_item(renew=False)  # So that dynet.renew_cg happens only once
        if not self.training or self.config.args.verify:
            self.out = self.state.create_passage(verify=self.config.args.verify, format=self.out_format)
        if write:
            for out_format in self.config.args.formats or [self.out_format]:
                if self.config.args.normalize and out_format == "ucca":
                    normalize(self.out)
                ioutil.write_passage(self.out, output_format=out_format, binary=out_format == "pickle",
                                     outdir=self.config.args.outdir, prefix=self.config.args.prefix,
                                     converter=get_output_converter(out_format), verbose=self.config.args.verbose,
                                     append=self.config.args.join, basename=self.config.args.join)
        if self.oracle and self.config.args.verify:
            self.verify(self.out, self.passage)
        ret = (self.out,)
        if self.evaluation:
            ret += (self.evaluate(self.evaluation),)
            status = "%-14s %s F1=%.3f" % (status, self.eval_type, self.f1)
        if display:
            self.config.print("%s%.3fs %s" % (self.accuracy_str, self.duration, status), level=1)
        if accuracies is not None:
            accuracies[self.passage.ID] = self.correct_action_count / self.action_count if self.action_count else 0
        return ret

    @property
    def accuracy_str(self):
        if self.oracle and self.action_count:
            accuracy_str = "a=%-14s" % percents_str(self.correct_action_count, self.action_count)
            if self.label_count:
                accuracy_str += " l=%-14s" % percents_str(self.correct_label_count, self.label_count)
            return "%-33s" % accuracy_str
        return ""

    def evaluate(self, mode=ParseMode.test):
        if self.format:
            self.config.print("Converting to %s and evaluating..." % self.format)
        self.eval_type = UNLABELED if self.config.is_unlabeled(self.in_format) else LABELED
        evaluator = EVALUATORS.get(self.format, evaluate_ucca)
        score = evaluator(self.out, self.passage, converter=get_output_converter(self.format),
                          verbose=self.out and self.config.args.verbose > 3,
                          constructions=self.config.args.constructions,
                          eval_types=(self.eval_type,) if mode is ParseMode.dev else (LABELED, UNLABELED))
        self.f1 = average_f1(score, self.eval_type)
        score.lang = self.lang
        return score

    def check_loop(self):
        """
        Check if the current state has already occurred, indicating a loop
        """
        h = hash(self.state)
        assert h not in self.state_hash_history, \
            "\n".join(["Transition loop", self.state.str("\n")] + [self.oracle.str("\n")] if self.oracle else ())
        self.state_hash_history.add(h)

    def verify(self, guessed, ref):
        """
        Compare predicted passage to true passage and raise an exception if they differ
        :param ref: true passage
        :param guessed: predicted passage to compare
        """
        assert ref.equals(guessed, ignore_node=self.ignore_node), \
            "Failed to produce true passage" + (diffutil.diff_passages(ref, guessed) if self.training else "")

    @property
    def num_tokens(self):
        return len(set(self.state.terminals).difference(self.state.buffer))  # To count even incomplete parses

    @num_tokens.setter
    def num_tokens(self, _):
        pass