def do_vca(vcacube, array_save_loc, fig_save_loc): """This function greets to the person passed in as parameter""" vca_array = np.zeros(3) #arlen=int(len(vcacube.data[:,0,0]))/10 #do full thickness mom0 SPS and add to array first #import data and compute moment 0 moment0 = vcacube.moment(order=0) #compute SPS, add in distance at some point as parameter pspec = PowerSpectrum(moment0) pspec.run(verbose=False, xunit=u.pix**-1) vca_array = np.vstack( (vca_array, [pspec.slope, len(vcacube[:, 0, 0]), pspec.slope_err])) #iterate VCA over fractions of the total width of the PPV vcacube for i in [128, 64, 32, 16, 8, 4, 2, 1]: vcacube.allow_huge_operations = True downsamp_vcacube = vcacube.downsample_axis(i, axis=0) downsamp_vcacube.allow_huge_operations = True vca = VCA(downsamp_vcacube) vca.run(verbose=False, beam_correct=correctbeam, save_name=fig_save_loc + '_thickness' + str(i) + '.png') vca_array = np.vstack((vca_array, [vca.slope, i, vca.slope_err])) vca_array = vca_array[1:, :] #save the array for future plotting without recomputing np.save(array_save_loc, vca_array)
def run_pspec(cube, distance=414 * u.pc, xunit=u.pix**-1, pickle_file=None, keep_data=False, **kwargs): cube = SpectralCube.read(cube) mom0_hdu = cube.moment0().hdu pspec = PowerSpectrum(mom0_hdu, distance=distance) pspec.run(xunit=xunit, **kwargs) if pickle_file: pspec.save_results(pickle_file, keep_data=keep_data) return pspec
def do_vca(input): #split inputs into the components vcacube, chansamps, array_save_loc, fig_save_loc = input print('starting' + str(vcacube)) #load in the vcacube vcacube = SpectralCube.read(vcacube) #check for only nans in first slice of cube, even though it reads the unmasked # data the data in the fits may be masked in some way before it reaches this point which will cause the vca to fail if there are only nonfinite values in the subcube finites = 0 nonfinites = 0 for checkx in np.arange(0, len(vcacube.unmasked_data[0, :, 0])): for checky in np.arange(0, len(vcacube.unmasked_data[0, 0, :])): if np.isfinite(vcacube.unmasked_data[0, checkx, checky]) == True: finites += 1 else: nonfinites += 1 #do vca or skip depending on whether its only NaNs if finites < 1: return 'data is only NaNs/inf' else: #do full thickness mom0 SPS and add to array first #import data and compute moment 0 moment0 = vcacube.moment(order=0) #compute SPS, add in distance at some point as parameter pspec = PowerSpectrum(moment0) pspec.run(verbose=False, xunit=u.pix**-1) vca_array = [pspec.slope, len(vcacube[:, 0, 0]), pspec.slope_err] #iterate VCA over fractions of the total width of the PPV vcacube #for i in [128,64,32,16,8,4,2,1]: for i in chansamps: vcacube.allow_huge_operations = True downsamp_vcacube = vcacube.downsample_axis(i, axis=0) downsamp_vcacube.allow_huge_operations = True vca = VCA(downsamp_vcacube) vca.run(verbose=True, save_name=f'{fig_save_loc}_thickness{i}.png') vca_array = np.vstack((vca_array, [vca.slope, i, vca.slope_err])) #save the array for future plotting without recomputing np.save(array_save_loc, vca_array) return vca_array print('finished' + str(vcacube))
def pspec_noise(cube="../subcubes/c18o_jrf_l1641n.fits", vel_low=12 * u.km / u.s, vel_hi=16 * u.km / u.s, run_kwargs={}, pspec_file="pspec_noise_c18o_jrf_l1641n"): try: cube = SpectralCube.read(cube) except: pass noise_hdu = cube.spectral_slab(vel_low, vel_hi).moment0().hdu noise_pspec = PowerSpectrum(noise_hdu) noise_pspec.run(**run_kwargs) noise_pspec.save_results(pspec_file) return noise_pspec
def test_pspec(plotname="pspec_rnoise_beamsmooth_apodizetukey.pdf", size=256, powerlaw=3., run_kwargs={ 'verbose': False, 'apodize_kernel': 'tukey' }, plot_kwargs={'fit_color': 'black'}, beam_smooth=True, pixel_scale=2 * u.arcsec, bmin=8.09 * u.arcsec, bmaj=10.01 * u.arcsec, bpa=-12.9 * u.deg, restfreq=1.4 * u.GHz, bunit=u.K): from spectral_cube import Projection from radio_beam import Beam rnoise_img = make_extended(size, powerlaw) # Create a FITS HDU rnoise_hdu = create_fits_hdu(rnoise_img, 2 * u.arcsec, 2 * u.arcsec, rnoise_img.shape, 1.4 * u.GHz, u.K) pspec = PowerSpectrum(rnoise_hdu) if beam_smooth: pencil_beam = Beam(0 * u.deg) rnoise_proj = Projection.from_hdu(rnoise_hdu).with_beam(pencil_beam) new_beam = Beam(bmaj, bmin, bpa) rnoise_conv = rnoise_proj.convolve_to(new_beam) # hdr = fits.Header(header) # rnoise_hdu = fits.PrimaryHDU(rnoise_img, header=hdr) pspec = PowerSpectrum(rnoise_conv) pspec.run(**run_kwargs) pspec.plot_fit(save_name=plotname, **plot_kwargs) return pspec
beamfwhm = 3 * u.arcsec imshape = rnoise_img.shape restfreq = 1.4 * u.GHz bunit = u.K plaw_hdu = create_fits_hdu(rnoise_img, pixel_scale, beamfwhm, imshape, restfreq, bunit) plt.imshow(plaw_hdu.data, cmap='viridis') plt.savefig(osjoin(fig_path, "rednoise_slope3_img.png")) plt.close() pspec = PowerSpectrum(plaw_hdu) pspec.run(verbose=True, radial_pspec_kwargs={'binsize': 1.0}, fit_kwargs={'weighted_fit': False}, fit_2D=False, low_cut=1. / (60 * u.pix), save_name=osjoin(fig_path, "rednoise_pspec_slope3.png")) pspec_partial = PowerSpectrum(rnoise_img[:128, :128], header=plaw_hdu.header) pspec_partial.run(verbose=False, fit_2D=False, low_cut=1 / (60. * u.pix)) plt.imshow(np.log10(pspec_partial.ps2D)) plt.savefig(osjoin(fig_path, "rednoise_pspec_slope3_2D_slicecross.png")) plt.close() pspec2 = PowerSpectrum(plaw_hdu) pspec2.run( verbose=False, radial_pspec_kwargs={'binsize': 1.0}, fit_kwargs={'weighted_fit': False},
pixel_scale = 3 * u.arcsec beamfwhm = 3 * u.arcsec imshape = rnoise_img.shape restfreq = 1.4 * u.GHz bunit = u.K plaw_hdu = create_fits_hdu(rnoise_img, pixel_scale, beamfwhm, imshape, restfreq, bunit) plt.imshow(plaw_hdu.data, cmap='viridis') plt.savefig(osjoin(fig_path, "rednoise_slope3_img.png")) plt.close() pspec = PowerSpectrum(plaw_hdu) pspec.run(verbose=True, radial_pspec_kwargs={'binsize': 1.0}, fit_kwargs={'weighted_fit': False}, fit_2D=False, low_cut=1. / (60 * u.pix), save_name=osjoin(fig_path, "rednoise_pspec_slope3.png")) pspec_partial = PowerSpectrum(rnoise_img[:128, :128], header=plaw_hdu.header) pspec_partial.run(verbose=False, fit_2D=False, low_cut=1 / (60. * u.pix)) plt.imshow(np.log10(pspec_partial.ps2D)) plt.savefig(osjoin(fig_path, "rednoise_pspec_slope3_2D_slicecross.png")) plt.close() pspec2 = PowerSpectrum(plaw_hdu) pspec2.run(verbose=False, radial_pspec_kwargs={'binsize': 1.0}, fit_kwargs={'weighted_fit': False}, fit_2D=False, low_cut=1. / (60 * u.pix), apodize_kernel='hanning',) pspec3 = PowerSpectrum(plaw_hdu)
size = 512 slope = 3 test_img = fits.PrimaryHDU( make_extended(size, powerlaw=slope, ellip=0.4, theta=(60 * u.deg).to(u.rad), randomseed=345987)) # The power-law behaviour continues up to ~1/4 of the size pspec = PowerSpectrum(test_img) pspec.run(fit_2D=True, radial_pspec_kwargs={'binsize': 2.0}, fit_kwargs={'weighted_fit': False}, low_cut=1 / (15 * u.pix), verbose=False) print("{0}+/-{1}".format(pspec.slope, pspec.slope_err)) print("{0}+/-{1}".format(pspec.slope2D, pspec.slope2D_err)) print("{0}+/-{1}".format(pspec.ellip2D, pspec.ellip2D_err)) print("{0}+/-{1}".format(pspec.theta2D, pspec.theta2D_err)) # pspec.plot_fit(show_2D=True) width = 8.75 # fig_ratio = (4.4 / 6.4) / 2 height = 5.07 figsize = (width, height)
# Now open the kernel file kernfits_name = names[name][0] kernfits_ext = names[name][1] kernel_filename = osjoin(kern_path, kernfits_name) kern_proj = Projection.from_hdu(fits.open(osjoin(kern_path, kernel_filename))[kernfits_ext]) img_scale = np.abs(proj_plane_pixel_scales(proj.wcs))[0] kern_scale = np.abs(proj_plane_pixel_scales(kern_proj.wcs))[0] kernel = resize_psf(kern_proj.value, kern_scale, img_scale) # Normalize to make a kernel kernel /= kernel.sum() kern_pspec = PowerSpectrum((kernel, kern_proj.header)) kern_pspec.run(verbose=False, fit_2D=False) save_name = "{0}_kernel_{1}.pspec.pkl".format(name, gal.lower()) kern_pspec.save_results(osjoin(data_path, gal, save_name), keep_data=True) # plt.draw() # input("?") # # plt.clf() # plt.close()
mvc_val = mvc.ps1D mvc_slope = mvc.slope mvc_slope2D = mvc.slope2D # Spatial Power Spectrum/ Bispectrum from turbustat.statistics import (PSpec_Distance, BiSpectrum_Distance, BiSpectrum, PowerSpectrum) pspec_distance = \ PSpec_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() pspec = PowerSpectrum(dataset1['moment0']) pspec.run() pspec_val = pspec.ps1D pspec_slope = pspec.slope pspec_slope2D = pspec.slope2D bispec_distance = \ BiSpectrum_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() bispec_val = bispec_distance.bispec1.bicoherence bispec_meansub = BiSpectrum(dataset1['moment0']) bispec_meansub.run(mean_subtract=True) bispec_val_meansub = bispec_meansub.bicoherence
do_makepspec_co = False do_fitpspec_co = False do_makepspec_dust_smooth = False do_fitpspec_dust_smooth = True if do_makepspec: pspec_name = osjoin(data_path, 'M31_CO', 'm33_hi_co_dustSD.pspec.pkl') gas_sd = hi_proj * hi_mass_conversion + co10_mass_conversion * co_proj gas_sd[np.isnan(hi_proj)] = np.NaN pspec = PowerSpectrum(gas_sd, distance=720 * u.kpc) pspec.run(verbose=False, fit_2D=False, high_cut=10**-1.3 / u.pix) # pspec.plot_fit() pspec.save_results(pspec_name) # Fit the pspec. if do_fitpspec: pspec = PowerSpectrum.load_results(pspec_name) pspec.load_beam() beam_size = pspec._beam.major.to(u.deg) / pspec._ang_size.to(u.deg) beam_size = beam_size.value beam_gauss_width = beam_size / np.sqrt(8 * np.log(2)) high_cut = (1 / (beam_gauss_width * 3.))
hi_satpt = 10. # Msol / pc^-2 # hi_satpt = 15. # Msol / pc^-2 # dense gas to dust conversion of 340 for LMC from Roman-Duval+2014 gdr = fitinfo_dict[gal]['GDR'] dust_satpt = (hi_satpt / gdr) / fitinfo_dict[gal]['cosinc'].value sat_mask = proj_coldens >= dust_satpt dust_sat = proj_coldens.copy() dust_sat[sat_mask] = dust_satpt pspec = PowerSpectrum(fits.PrimaryHDU(proj_coldens, hdr), distance=fitinfo_dict[gal]['distance']) pspec.run(verbose=False, fit_2D=False) pspec_sat = PowerSpectrum(fits.PrimaryHDU(dust_sat, hdr), distance=fitinfo_dict[gal]['distance']) pspec_sat.run(verbose=False, fit_2D=False) beam_size = pspec_sat._beam.major.to(u.deg) / pspec_sat._ang_size.to(u.deg) beam_size = beam_size.value beam_gauss_width = beam_size / np.sqrt(8 * np.log(2)) high_cut = (1 / (beam_gauss_width * 3.)) fit_mask = pspec_sat.freqs.value < high_cut # And cut out the largest scales due to expected deviations with # small stddev
else: save_name = "{0}_{1}_{2}_{3}_mjysr.pspec.pkl".format(gal.lower(), name, res_type, slice_name) # For now skip already saved power-spectra if os.path.exists(osjoin(data_path, gal, save_name)) and skip_check: print("Already saved pspec for {}. Skipping".format(filename)) continue else: os.system("rm -f {}".format(osjoin(data_path, gal, save_name))) pspec = PowerSpectrum(proj[slicer], distance=dist) pspec.run(verbose=False, beam_correct=False, fit_2D=False, high_cut=0.1 / u.pix, use_pyfftw=True, threads=ncores, apodize_kernel='tukey', alpha=0.3) pspec.save_results(osjoin(data_path, gal, save_name), keep_data=False) if do_fit_pspec: # Load model functions repo_path = os.path.expanduser("~/ownCloud/project_code/DustyPowerSpectra/") code_name = os.path.join(repo_path, "models.py") exec(compile(open(code_name, "rb").read(), code_name, 'exec')) # Make a plot output folder plot_folder = osjoin(data_path, "{}_plots".format(gal))
import astropy.units as u plt.rcParams['axes.unicode_minus'] = False size = 512 slope = 3 test_img = fits.PrimaryHDU(make_extended(size, powerlaw=slope, ellip=0.4, theta=(60 * u.deg).to(u.rad), randomseed=345987)) # The power-law behaviour continues up to ~1/4 of the size pspec = PowerSpectrum(test_img) pspec.run(fit_2D=True, radial_pspec_kwargs={'binsize': 2.0}, fit_kwargs={'weighted_fit': False}, low_cut=1 / (15 * u.pix), verbose=False) print("{0}+/-{1}".format(pspec.slope, pspec.slope_err)) print("{0}+/-{1}".format(pspec.slope2D, pspec.slope2D_err)) print("{0}+/-{1}".format(pspec.ellip2D, pspec.ellip2D_err)) print("{0}+/-{1}".format(pspec.theta2D, pspec.theta2D_err)) # pspec.plot_fit(show_2D=True) width = 8.75 # fig_ratio = (4.4 / 6.4) / 2 height = 5.07 figsize = (width, height) fig = plt.figure(figsize=figsize)
save_name=osjoin(fig_path, "pdf_design4_mom0_plaw.png")) cube = SpectralCube.read(osjoin(data_path, "Design4_flatrho_0021_00_radmc.fits")) pdf_cube = PDF(cube) pdf_cube.run(verbose=True, do_fit=False, save_name=osjoin(fig_path, "pdf_design4.png")) # PSpec if run_pspec: from turbustat.statistics import PowerSpectrum moment0 = fits.open(osjoin(data_path, "Design4_flatrho_0021_00_radmc_moment0.fits"))[0] pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True, xunit=u.pix**-1, save_name=osjoin(fig_path, "design4_pspec.png")) pspec.run(verbose=True, xunit=u.pix**-1, low_cut=0.025 / u.pix, high_cut=0.1 / u.pix, save_name=osjoin(fig_path, "design4_pspec_limitedfreq.png")) print(pspec.slope2D, pspec.slope2D_err) print(pspec.ellip2D, pspec.ellip2D_err) print(pspec.theta2D, pspec.theta2D_err) # How about fitting a break? pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True, xunit=u.pc**-1, low_cut=0.025 / u.pix, high_cut=0.4 / u.pix, fit_2D=False, fit_kwargs={'brk': 0.1 / u.pix, 'log_break': False}, save_name=osjoin(fig_path, "design4_pspec_breakfit.png"))
def generate_unitvals(): import numpy as np import astropy.units as u # The machine producing these values should have emcee installed! try: import emcee except ImportError: raise ImportError("Install emcee to generate unit test data.") from turbustat.tests._testing_data import dataset1, dataset2 # Wavelet Transform from turbustat.statistics import Wavelet_Distance, Wavelet wavelet_distance = \ Wavelet_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() wavelet_val = wavelet_distance.wt1.values wavelet_slope = wavelet_distance.wt1.slope # Wavelet with a break wave_break = Wavelet(dataset1['moment0']).run(xhigh=7 * u.pix, brk=5.5 * u.pix) wavelet_slope_wbrk = wave_break.slope wavelet_brk_wbrk = wave_break.brk.value # MVC from turbustat.statistics import MVC_Distance, MVC mvc_distance = MVC_Distance(dataset1, dataset2).distance_metric() mvc = MVC(dataset1["centroid"], dataset1["moment0"], dataset1["linewidth"]) mvc.run() mvc_val = mvc.ps1D mvc_slope = mvc.slope mvc_slope2D = mvc.slope2D # Spatial Power Spectrum/ Bispectrum from turbustat.statistics import (PSpec_Distance, Bispectrum_Distance, Bispectrum, PowerSpectrum) pspec_distance = \ PSpec_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() pspec = PowerSpectrum(dataset1['moment0']) pspec.run() pspec_val = pspec.ps1D pspec_slope = pspec.slope pspec_slope2D = pspec.slope2D bispec_distance = \ Bispectrum_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() bispec_val = bispec_distance.bispec1.bicoherence azimuthal_slice = bispec_distance.bispec1.azimuthal_slice( 16, 10, value='bispectrum_logamp', bin_width=5 * u.deg) bispec_azim_bins = azimuthal_slice[16][0] bispec_azim_vals = azimuthal_slice[16][1] bispec_azim_stds = azimuthal_slice[16][2] bispec_meansub = Bispectrum(dataset1['moment0']) bispec_meansub.run(mean_subtract=True) bispec_val_meansub = bispec_meansub.bicoherence # Genus from turbustat.statistics import GenusDistance, Genus smooth_scales = np.linspace(1.0, 0.1 * min(dataset1["moment0"][0].shape), 5) genus_distance = \ GenusDistance(dataset1["moment0"], dataset2["moment0"], lowdens_percent=20, genus_kwargs=dict(match_kernel=True)).distance_metric() # The distance method requires standardizing the data. Make a # separate version that isn't genus = Genus(dataset1['moment0'], smoothing_radii=smooth_scales) genus.run(match_kernel=True) genus_val = genus.genus_stats # Delta-Variance from turbustat.statistics import DeltaVariance_Distance, DeltaVariance delvar_distance = \ DeltaVariance_Distance(dataset1["moment0"], dataset2["moment0"], weights1=dataset1["moment0_error"][0], weights2=dataset2["moment0_error"][0], delvar_kwargs=dict(xhigh=11 * u.pix)) delvar_distance.distance_metric() delvar = DeltaVariance(dataset1["moment0"], weights=dataset1['moment0_error'][0]).run(xhigh=11 * u.pix) delvar_val = delvar.delta_var delvar_slope = delvar.slope # Test with a break point delvar_wbrk = \ DeltaVariance(dataset1["moment0"], weights=dataset1['moment0_error'][0]).run(xhigh=11 * u.pix, brk=6 * u.pix) delvar_slope_wbrk = delvar_wbrk.slope delvar_brk = delvar_wbrk.brk.value # Change boundary conditions delvar_fill = \ DeltaVariance(dataset1["moment0"], weights=dataset1['moment0_error'][0]).run(xhigh=11 * u.pix, boundary='fill', nan_treatment='interpolate') delvar_fill_val = delvar_fill.delta_var delvar_fill_slope = delvar_fill.slope # VCA/VCS from turbustat.statistics import VCA_Distance, VCS_Distance, VCA vcs_distance = VCS_Distance(dataset1["cube"], dataset2["cube"], fit_kwargs=dict(high_cut=0.3 / u.pix, low_cut=3e-2 / u.pix)) vcs_distance.distance_metric() vcs_val = vcs_distance.vcs1.ps1D vcs_slopes = vcs_distance.vcs1.slope vca_distance = VCA_Distance(dataset1["cube"], dataset2["cube"]).distance_metric() vca = VCA(dataset1['cube']) vca.run() vca_val = vca.ps1D vca_slope = vca.slope vca_slope2D = vca.slope2D # Tsallis from turbustat.statistics import Tsallis tsallis_kwargs = {"sigma_clip": 5, "num_bins": 100} tsallis = Tsallis(dataset1['moment0'], lags=[1, 2, 4, 8, 16] * u.pix) tsallis.run(periodic=True, **tsallis_kwargs) tsallis_val = tsallis.tsallis_params tsallis_stderrs = tsallis.tsallis_stderrs tsallis_noper = Tsallis(dataset1['moment0'], lags=[1, 2, 4, 8, 16] * u.pix) tsallis_noper.run(periodic=False, num_bins=100) tsallis_val_noper = tsallis_noper.tsallis_params # High-order stats from turbustat.statistics import StatMoments_Distance, StatMoments moment_distance = \ StatMoments_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() kurtosis_val = moment_distance.moments1.kurtosis_hist[1] skewness_val = moment_distance.moments1.skewness_hist[1] # Save a few from the non-distance version tester = StatMoments(dataset1["moment0"]) tester.run() kurtosis_nondist_val = tester.kurtosis_hist[1] skewness_nondist_val = tester.skewness_hist[1] # Non-periodic tester = StatMoments(dataset1["moment0"]) tester.run(periodic=False) kurtosis_nonper_val = tester.kurtosis_hist[1] skewness_nonper_val = tester.skewness_hist[1] # PCA from turbustat.statistics import PCA_Distance, PCA pca_distance = PCA_Distance(dataset1["cube"], dataset2["cube"]).distance_metric() pca = PCA(dataset1["cube"], distance=250 * u.pc) pca.run(mean_sub=True, eigen_cut_method='proportion', min_eigval=0.75, spatial_method='contour', spectral_method='walk-down', fit_method='odr', brunt_beamcorrect=False, spectral_output_unit=u.m / u.s) pca_val = pca.eigvals pca_spectral_widths = pca.spectral_width().value pca_spatial_widths = pca.spatial_width().value pca_fit_vals = { "index": pca.index, "gamma": pca.gamma, "intercept": pca.intercept().value, "sonic_length": pca.sonic_length()[0].value } # Now get those values using mcmc pca.run(mean_sub=True, eigen_cut_method='proportion', min_eigval=0.75, spatial_method='contour', spectral_method='walk-down', fit_method='bayes', brunt_beamcorrect=False, spectral_output_unit=u.m / u.s) pca_fit_vals["index_bayes"] = pca.index pca_fit_vals["gamma_bayes"] = pca.gamma pca_fit_vals["intercept_bayes"] = pca.intercept().value pca_fit_vals["sonic_length_bayes"] = pca.sonic_length()[0].value # Record the number of eigenvalues kept by the auto method pca.run(mean_sub=True, n_eigs='auto', min_eigval=0.001, eigen_cut_method='value', decomp_only=True) pca_fit_vals["n_eigs_value"] = pca.n_eigs # Now w/ the proportion of variance cut pca.run(mean_sub=True, n_eigs='auto', min_eigval=0.99, eigen_cut_method='proportion', decomp_only=True) pca_fit_vals["n_eigs_proportion"] = pca.n_eigs # SCF from turbustat.statistics import SCF_Distance, SCF scf_distance = SCF_Distance(dataset1["cube"], dataset2["cube"], size=11).distance_metric() scf = SCF(dataset1['cube'], size=11).run() scf_val = scf.scf_surface scf_spectrum = scf.scf_spectrum scf_slope = scf.slope scf_slope2D = scf.slope2D # Now run the SCF when the boundaries aren't continuous scf_distance_cut_bound = SCF_Distance(dataset1["cube"], dataset2["cube"], size=11, boundary='cut').distance_metric() scf_val_noncon_bound = scf_distance_cut_bound.scf1.scf_surface scf_fitlims = SCF(dataset1['cube'], size=11) scf_fitlims.run(boundary='continuous', xlow=1.5 * u.pix, xhigh=4.5 * u.pix) scf_slope_wlimits = scf_fitlims.slope scf_slope_wlimits_2D = scf_fitlims.slope2D # Cramer Statistic from turbustat.statistics import Cramer_Distance cramer_distance = Cramer_Distance( dataset1["cube"], dataset2["cube"], noise_value1=0.1, noise_value2=0.1).distance_metric(normalize=False) cramer_val = cramer_distance.data_matrix1 # Dendrograms from turbustat.statistics import Dendrogram_Distance, Dendrogram_Stats min_deltas = np.logspace(-1.5, 0.5, 40) dendro_distance = Dendrogram_Distance( dataset1["cube"], dataset2["cube"], min_deltas=min_deltas).distance_metric() dendrogram_val = dendro_distance.dendro1.numfeatures # With periodic boundaries dendro = Dendrogram_Stats(dataset1['cube'], min_deltas=min_deltas) dendro.run(periodic_bounds=True) dendrogram_periodic_val = dendro.numfeatures # PDF from turbustat.statistics import PDF_Distance pdf_distance = \ PDF_Distance(dataset1["moment0"], dataset2["moment0"], min_val1=0.05, min_val2=0.05, weights1=dataset1["moment0_error"][0]**-2., weights2=dataset2["moment0_error"][0]**-2., do_fit=False, normalization_type='standardize') pdf_distance.distance_metric() pdf_val = pdf_distance.PDF1.pdf pdf_ecdf = pdf_distance.PDF1.ecdf pdf_bins = pdf_distance.bins # Do a fitted version of the PDF pca pdf_fit_distance = \ PDF_Distance(dataset1["moment0"], dataset2["moment0"], min_val1=0.05, min_val2=0.05, do_fit=True, normalization_type=None) pdf_fit_distance.distance_metric() np.savez_compressed('checkVals', wavelet_val=wavelet_val, wavelet_slope=wavelet_slope, wavelet_slope_wbrk=wavelet_slope_wbrk, wavelet_brk_wbrk=wavelet_brk_wbrk, mvc_val=mvc_val, mvc_slope=mvc_slope, mvc_slope2D=mvc_slope2D, pspec_val=pspec_val, pspec_slope=pspec_slope, pspec_slope2D=pspec_slope2D, bispec_val=bispec_val, bispec_azim_bins=bispec_azim_bins, bispec_azim_vals=bispec_azim_vals, bispec_azim_stds=bispec_azim_stds, bispec_val_meansub=bispec_val_meansub, genus_val=genus_val, delvar_val=delvar_val, delvar_slope=delvar_slope, delvar_slope_wbrk=delvar_slope_wbrk, delvar_brk=delvar_brk, delvar_fill_val=delvar_fill_val, delvar_fill_slope=delvar_fill_slope, vcs_val=vcs_val, vcs_slopes=vcs_slopes, vca_val=vca_val, vca_slope=vca_slope, vca_slope2D=vca_slope2D, tsallis_val=tsallis_val, tsallis_stderrs=tsallis_stderrs, tsallis_val_noper=tsallis_val_noper, kurtosis_val=kurtosis_val, skewness_val=skewness_val, kurtosis_nondist_val=kurtosis_nondist_val, skewness_nondist_val=skewness_nondist_val, kurtosis_nonper_val=kurtosis_nonper_val, skewness_nonper_val=skewness_nonper_val, pca_val=pca_val, pca_fit_vals=pca_fit_vals, pca_spectral_widths=pca_spectral_widths, pca_spatial_widths=pca_spatial_widths, scf_val=scf_val, scf_slope_wlimits=scf_slope_wlimits, scf_slope_wlimits_2D=scf_slope_wlimits_2D, scf_val_noncon_bound=scf_val_noncon_bound, scf_spectrum=scf_spectrum, scf_slope=scf_slope, scf_slope2D=scf_slope2D, cramer_val=cramer_val, dendrogram_val=dendrogram_val, dendrogram_periodic_val=dendrogram_periodic_val, pdf_val=pdf_val, pdf_bins=pdf_bins, pdf_ecdf=pdf_ecdf) np.savez_compressed( 'computed_distances', mvc_distance=mvc_distance.distance, pca_distance=pca_distance.distance, vca_distance=vca_distance.distance, pspec_distance=pspec_distance.distance, scf_distance=scf_distance.distance, wavelet_distance=wavelet_distance.distance, delvar_curve_distance=delvar_distance.curve_distance, delvar_slope_distance=delvar_distance.slope_distance, # tsallis_distance=tsallis_distance.distance, kurtosis_distance=moment_distance.kurtosis_distance, skewness_distance=moment_distance.skewness_distance, cramer_distance=cramer_distance.distance, genus_distance=genus_distance.distance, vcs_distance=vcs_distance.distance, bispec_mean_distance=bispec_distance.mean_distance, bispec_surface_distance=bispec_distance.surface_distance, dendrohist_distance=dendro_distance.histogram_distance, dendronum_distance=dendro_distance.num_distance, pdf_hellinger_distance=pdf_distance.hellinger_distance, pdf_ks_distance=pdf_distance.ks_distance, pdf_lognorm_distance=pdf_fit_distance.lognormal_distance)
pdf_cube = PDF(cube) pdf_cube.run(verbose=True, do_fit=False, save_name=osjoin(fig_path, "pdf_design4.png")) # PSpec if run_pspec: from turbustat.statistics import PowerSpectrum moment0 = fits.open( osjoin(data_path, "Design4_flatrho_0021_00_radmc_moment0.fits"))[0] pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True, xunit=u.pix**-1, save_name=osjoin(fig_path, "design4_pspec.png")) pspec.run(verbose=True, xunit=u.pix**-1, low_cut=0.02 / u.pix, high_cut=0.1 / u.pix, save_name=osjoin(fig_path, "design4_pspec_limitedfreq.png")) print(pspec.slope2D, pspec.slope2D_err) print(pspec.ellip2D, pspec.ellip2D_err) print(pspec.theta2D, pspec.theta2D_err) # How about fitting a break? pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True,
pdf_cube = PDF(cube) pdf_cube.run(verbose=True, do_fit=False, save_name=osjoin(fig_path, "pdf_design4.png")) # PSpec if run_pspec: from turbustat.statistics import PowerSpectrum moment0 = fits.open( osjoin(data_path, "Design4_flatrho_0021_00_radmc_moment0.fits"))[0] pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True, xunit=u.pix**-1, save_name=osjoin(fig_path, "design4_pspec.png")) pspec.run(verbose=True, xunit=u.pix**-1, low_cut=0.025 / u.pix, high_cut=0.1 / u.pix, save_name=osjoin(fig_path, "design4_pspec_limitedfreq.png")) print(pspec.slope2D, pspec.slope2D_err) print(pspec.ellip2D, pspec.ellip2D_err) print(pspec.theta2D, pspec.theta2D_err) # How about fitting a break? pspec = PowerSpectrum(moment0, distance=250 * u.pc) pspec.run(verbose=True,
fits.PrimaryHDU(hdu_coldens[0].data[0].squeeze(), hdu_coldens[0].header)) # Get minimal size proj_coldens = proj_coldens[nd.find_objects(np.isfinite(proj_coldens))[0]] proj_coldens = proj_coldens.with_beam(fitinfo_dict[gal]['beam']) # Run on the original image pspec = PowerSpectrum(proj_coldens, distance=fitinfo_dict[gal]['distance']) pspec.run( verbose=False, beam_correct=False, fit_2D=False, high_cut=0.1 / u.pix, use_pyfftw=True, threads=ncores, # radial_pspec_kwargs={"theta_0": gal_obj.position_angle + 90*u.deg, "delta_theta": 50 * u.deg}, # radial_pspec_kwargs={"logspacing": True, 'binsize': 10.}, apodize_kernel=fitinfo_dict[gal]['apod_kern']) # Deproject the image AND the beam deproj_img = deproject(proj_coldens, proj_coldens.header, gal_obj, inc_correction=True) # Cut this image down to the minimal size deproj_img = deproj_img[nd.find_objects(np.isfinite(deproj_img))[0]]
gal.lower(), name) # For now skip already saved power-spectra if os.path.exists(osjoin(data_path, gal, save_name)) and skip_check: print("Already saved pspec for {}. Skipping".format( filename)) continue else: os.system("rm -f {}".format( osjoin(data_path, gal, save_name))) pspec = PowerSpectrum(proj, distance=dist) pspec.run(verbose=False, beam_correct=False, fit_2D=False, high_cut=0.1 / u.pix, use_pyfftw=True, threads=ncores) pspec.save_results(osjoin(data_path, gal, save_name), keep_data=False) del pspec, proj, hdu if do_fitpspec: fit_results = { 'logA': [], 'ind': [], 'logB': [], 'logA_std': [],
save_name = f"{out_filename.rstrip('.fits')}.pspec.pkl" # For now skip already saved power-spectra if os.path.exists(osjoin(data_path, gal, save_name)) and skip_check: print("Already saved pspec for {}. Skipping".format(filename)) continue else: os.system("rm -f {}".format(osjoin(data_path, gal, save_name))) pspec = PowerSpectrum(proj, distance=dist) pspec.run(verbose=False, beam_correct=False, fit_2D=False, high_cut=0.1 / u.pix, use_pyfftw=True, threads=ncores, apodize_kernel=fitinfo_dict[gal][name]['apod_kern']) pspec.save_results(osjoin(data_path, gal, save_name), keep_data=False) del pspec, proj, hdu if run_fits: row_names = [] fit_results = { 'logA': [], 'ind': [],
mvc_val = mvc.ps1D mvc_slope = mvc.slope mvc_slope2D = mvc.slope2D # Spatial Power Spectrum/ Bispectrum from turbustat.statistics import (PSpec_Distance, Bispectrum_Distance, Bispectrum, PowerSpectrum) pspec_distance = \ PSpec_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() pspec = PowerSpectrum(dataset1['moment0']) pspec.run() pspec_val = pspec.ps1D pspec_slope = pspec.slope pspec_slope2D = pspec.slope2D bispec_distance = \ Bispectrum_Distance(dataset1["moment0"], dataset2["moment0"]).distance_metric() bispec_val = bispec_distance.bispec1.bicoherence azimuthal_slice = bispec_distance.bispec1.azimuthal_slice(16, 10, value='bispectrum_logamp', bin_width=5 * u.deg) bispec_azim_bins = azimuthal_slice[16][0]