def test_converter_more_files(_sdds_file, _test_file): rep = 2 converter_entrypoint(files=[_sdds_file], outputdir=_test_file.parent, realizations=rep) origin = tbt.read_tbt(_sdds_file) for i in range(rep): new = tbt.read_tbt(f"{_test_file}_r{i}.sdds") _compare_tbt(origin, new, False)
def test_converter_one_file_with_noise(_sdds_file, _test_file): np.random.seed(2019) noiselevel = 0.0005 converter_entrypoint(files=[_sdds_file], outputdir=_test_file.parent, noise_levels=[noiselevel]) origin = tbt.read_tbt(_sdds_file) new = tbt.read_tbt(f"{_test_file}_n{noiselevel}.sdds") _compare_tbt(origin, new, True, noiselevel * 10)
def test_converter_more_files_with_noise(_sdds_file, _test_file): np.random.seed(2019) rep = 2 noiselevel = 0.0005 converter_entrypoint(files=[_sdds_file], outputdir=_test_file.parent, realizations=rep, noise_levels=[noiselevel]) origin = tbt.read_tbt(_sdds_file) for i in range(rep): new = tbt.read_tbt(f"{_test_file}_n{noiselevel}_r{i}.sdds") _compare_tbt(origin, new, True, noiselevel * 10)
def test_converter_drop_elements(_sdds_file, _test_file, dropped_elements): converter_entrypoint( files=[_sdds_file], outputdir=_test_file.parent, drop_elements=dropped_elements, ) new = tbt.read_tbt(f"{_test_file}.sdds") for transverse_data in new.matrices: for dataframe in (transverse_data.X, transverse_data.Y): for element in dropped_elements: assert element not in dataframe.index
def _run_harpy(harpy_options): iotools.create_dirs(harpy_options.outputdir) with timeit( lambda spanned: LOGGER.info(f"Total time for Harpy: {spanned}")): lins = [] all_options = _replicate_harpy_options_per_file(harpy_options) tbt_datas = [(tbt.read_tbt(option.files, datatype=option.tbt_datatype), option) for option in all_options] for tbt_data, option in tbt_datas: lins.extend([ handler.run_per_bunch(bunch_data, bunch_options) for bunch_data, bunch_options in _multibunch(tbt_data, option) ]) return lins
def _read_and_write_files(opt): for input_file in opt.files: tbt_data = tbt.read_tbt(input_file, datatype=opt.tbt_datatype) if opt.drop_elements: tbt_data = _drop_elements(tbt_data, opt.drop_elements) if opt.use_average: tbt_data = tbt.utils.generate_average_tbtdata(tbt_data) for i in range(opt.realizations): suffix = f"_r{i}" if opt.realizations > 1 else "" if opt.noise_levels is None: tbt.write( Path(opt.outputdir) / f"{_file_name_without_sdds(input_file)}{suffix}", tbt_data=tbt_data, ) else: for noise_level in opt.noise_levels: tbt.write( Path(opt.outputdir) / f"{_file_name_without_sdds(input_file)}_n{noise_level}{suffix}", tbt_data=tbt_data, noise=float(noise_level), )
def test_converter_one_file(_sdds_file, _test_file): converter_entrypoint(files=[_sdds_file], outputdir=_test_file.parent) origin = tbt.read_tbt(_sdds_file) new = tbt.read_tbt(f"{_test_file}.sdds") _compare_tbt(origin, new, False)