Esempio n. 1
0
 def test_shape(self):
     dims = turret.Dimensions(((13, turret.DimensionType.SEQUENCE),
                               (7, turret.DimensionType.CHANNEL),
                               (19, turret.DimensionType.SPATIAL)))
     self.assertEqual((13, 7, 19), dims.shape)
     dims = turret.Dimensions(((19, turret.DimensionType.SPATIAL), ))
     self.assertEqual((19, ), dims.shape)
Esempio n. 2
0
 def build_network(network):
     d = network.add_constant(data, turret.Dimensions.CHW(C, H, W))
     i = network.add_input(
         "indices", turret.DataType.INT32,
         turret.Dimensions(((K, turret.DimensionType.INDEX), )))
     h = L.gather(d, i, 0)
     network.mark_output("output", h)
Esempio n. 3
0
 def test_init_form_dimension(self):
     dims = turret.Dimensions(
         (turret.Dimension(11, turret.DimensionType.CHANNEL),
          turret.Dimension(17, turret.DimensionType.SPATIAL)))
     self.assertEqual(2, len(dims))
     self.assertEqual(11, dims[0].size)
     self.assertEqual(17, dims[1].size)
     self.assertEqual(turret.DimensionType.CHANNEL, dims[0].type)
     self.assertEqual(turret.DimensionType.SPATIAL, dims[1].type)
Esempio n. 4
0
 def build_network(network):
     d = network.add_input("data", turret.DataType.FLOAT,
                           turret.Dimensions.CHW(C, H, W))
     i = network.add_input(
         "indices", turret.DataType.INT32,
         turret.Dimensions(((K1, turret.DimensionType.INDEX),
                            (K2, turret.DimensionType.INDEX))))
     h = L.gather(d, i, 1)
     network.mark_output("output", h)
Esempio n. 5
0
 def test_init_from_tuple(self):
     dims = turret.Dimensions(((13, turret.DimensionType.INDEX),
                               (7, turret.DimensionType.CHANNEL),
                               (19, turret.DimensionType.SPATIAL)))
     self.assertEqual(3, len(dims))
     self.assertEqual(13, dims[0].size)
     self.assertEqual(7, dims[1].size)
     self.assertEqual(19, dims[2].size)
     self.assertEqual(turret.DimensionType.INDEX, dims[0].type)
     self.assertEqual(turret.DimensionType.CHANNEL, dims[1].type)
     self.assertEqual(turret.DimensionType.SPATIAL, dims[2].type)
Esempio n. 6
0
 def test_iterator(self):
     dims = turret.Dimensions(((13, turret.DimensionType.SEQUENCE),
                               (7, turret.DimensionType.CHANNEL),
                               (19, turret.DimensionType.SPATIAL)))
     it = iter(dims)
     dim = next(it)
     self.assertEqual(13, dim.size)
     self.assertEqual(turret.DimensionType.SEQUENCE, dim.type)
     dim = next(it)
     self.assertEqual(7, dim.size)
     self.assertEqual(turret.DimensionType.CHANNEL, dim.type)
     dim = next(it)
     self.assertEqual(19, dim.size)
     self.assertEqual(turret.DimensionType.SPATIAL, dim.type)
     self.assertRaises(StopIteration, lambda: next(it))
Esempio n. 7
0
def build_encodeengine(encoder,
                       batch_size,
                       dtype,
                       logger,
                       max_sequence_length=16,
                       workspace_size=2**30):
    sys.stderr.write("------------------------------\n")
    sys.stderr.write(" encoder\n")
    sys.stderr.write("------------------------------\n")
    builder = turret.InferenceEngineBuilder(logger)
    network = builder.create_network(dtype)

    # extract parameters
    emb = encoder["embedding.weight"]
    weights = []
    bias = []
    weights_rev = []
    bias_rev = []
    bidirect = ("lstm.weight_hh_l0_reverse" in encoder)
    weights.append(
        _reorg_lstm_parameters(encoder["lstm.weight_ih_l0"][:],
                               encoder["lstm.weight_hh_l0"][:]))
    bias.append(
        _reorg_lstm_parameters(encoder["lstm.bias_ih_l0"][:],
                               encoder["lstm.bias_hh_l0"][:]))
    if bidirect:
        weights_rev.append(
            _reorg_lstm_parameters(encoder["lstm.weight_ih_l0_reverse"][:],
                                   encoder["lstm.weight_hh_l0_reverse"][:]))
        bias_rev.append(
            _reorg_lstm_parameters(encoder["lstm.bias_ih_l0_reverse"][:],
                                   encoder["lstm.bias_hh_l0_reverse"][:]))

    # define a network
    src = network.add_constant(emb)
    h = network.add_input(
        "words", turret.DataType.INT32,
        turret.Dimensions(((1, turret.DimensionType.INDEX),
                           (max_sequence_length, turret.DimensionType.INDEX))))
    h = L.gather(src, h, 0)

    h_lengths = network.add_input(
        "lengths", turret.DataType.INT32,
        turret.Dimensions(((1, turret.DimensionType.INDEX), )))

    if bidirect:
        context, hidden, cell = L.blstm_v2(h,
                                           max_sequence_length,
                                           weights,
                                           weights_rev,
                                           bias,
                                           bias_rev,
                                           sequence_lengths=h_lengths)
    else:
        context, hidden, cell = L.lstm_v2(h,
                                          max_sequence_length,
                                          weights,
                                          bias,
                                          sequence_lengths=h_lengths)

    network.mark_output("context", context)
    network.mark_output("hidden", hidden)
    network.mark_output("cell", cell)

    builder.max_batch_size = batch_size
    builder.max_workspace_size = workspace_size

    # build
    engine = builder.build(network)
    return engine
Esempio n. 8
0
def build_decodeengine(decoder,
                       batch_size,
                       dtype,
                       logger,
                       max_sequence_length=16,
                       workspace_size=2**30):
    sys.stderr.write("------------------------------\n")
    sys.stderr.write(" decoder\n")
    sys.stderr.write("------------------------------\n")
    builder = turret.InferenceEngineBuilder(logger)
    network = builder.create_network(dtype)

    emb = decoder["embedding.weight"]
    hidden_size = decoder["lstm.weight_hh_l0"].shape[1]

    weights = []
    bias = []
    weights.append(
        _reorg_lstm_parameters(decoder["lstm.weight_ih_l0"],
                               decoder["lstm.weight_hh_l0"]))
    bias.append(
        _reorg_lstm_parameters(decoder["lstm.bias_ih_l0"],
                               decoder["lstm.bias_hh_l0"]))

    tgt = network.add_constant(emb)

    # Embedding and LSTM.
    h_indices_in = network.add_input(
        "indices_in", turret.DataType.INT32,
        turret.Dimensions(((1, turret.DimensionType.INDEX), )))
    h_indices_in = L.gather(tgt, h_indices_in, 0)
    h_indices_in = L.reshape(h_indices_in,
                             turret.Dimensions.CHW(1, 1, hidden_size))
    h_hidden = network.add_input("hidden_in", turret.DataType.FLOAT,
                                 turret.Dimensions.CHW(1, 1, hidden_size))
    h_cell = network.add_input("cell_in", turret.DataType.FLOAT,
                               turret.Dimensions.CHW(1, 1, hidden_size))
    h, h_hidden, h_cell = L.lstm_v2(h_indices_in,
                                    1,
                                    weights,
                                    bias,
                                    hidden_state=h_hidden,
                                    cell_state=h_cell)
    network.mark_output("hidden_out", h_hidden)
    network.mark_output("cell_out", h_cell)

    # Attention.
    h_hidden_enc = network.add_input(
        "enc_hidden", turret.DataType.FLOAT,
        turret.Dimensions.CHW(1, max_sequence_length, hidden_size))
    h_attn_w = L.elementwise(h_hidden_enc, h_hidden,
                             turret.ElementWiseOperation.PROD)
    h_attn_w = L.reduce(h_attn_w, turret.ReduceOperation.SUM, axes=2)
    h_hidden_enc = L.reshape(
        h_hidden_enc, turret.Dimensions.HW(max_sequence_length, hidden_size))
    h_context = L.matrix_multiply(h_attn_w, False, h_hidden_enc, False)
    h_context = L.softmax(h_context)
    h_context = L.reshape(
        h_context,
        turret.Dimensions.CHW(1, h_context.dimensions.shape[0],
                              h_context.dimensions.shape[1]))
    h = L.concat([h, h_context], axis=2)

    # Out, softmax, and log.
    out_weights = decoder["out.weight"][:]
    out_bias = decoder["out.bias"][:]
    h = L.fully_connected(h, out_weights, out_bias)
    h = L.softmax(h)
    h = L.unary(h, turret.UnaryOperation.LOG)
    h = L.reshape(
        h,
        turret.Dimensions(
            ((h.dimensions.shape[0], turret.DimensionType.SPATIAL), )))
    _, h_indices_out = L.top_k(h, turret.TopKOperation.MAX, 1, 1)
    h_indices_out.dimensions  # If this line is removed, error is occurred.
    network.mark_output("indices_out", h_indices_out)

    builder.max_batch_size = batch_size
    builder.max_workspace_size = workspace_size

    # build
    engine = builder.build(network)
    return engine
Esempio n. 9
0
 def test_size(self):
     dims = turret.Dimensions(((13, turret.DimensionType.SEQUENCE),
                               (7, turret.DimensionType.CHANNEL),
                               (19, turret.DimensionType.SPATIAL)))
     self.assertEqual(13 * 7 * 19, dims.size)
Esempio n. 10
0
 def from_too_small_tuple():
     return turret.Dimensions(((1, ), (2, )))
Esempio n. 11
0
 def from_too_large_tuple():
     return turret.Dimensions(((3, turret.DimensionType.SPATIAL, None)))
Esempio n. 12
0
 def from_valid_and_int():
     return turret.Dimensions(((2, turret.DimensionType.SPATIAL), 3))