Esempio n. 1
0
def classification(class_types):
    if class_types == 'industry':
        industry_classified = ts.get_industry_classified()
        industry_classified.to_csv('D:\\ts\\classification\\industry_classified.csv', encoding='gbk')
    elif class_types == 'concept':
        concept_classified = ts.get_concept_classified()
        concept_classified.to_csv('D:\\ts\\classification\\concept_classified.csv', encoding='gbk')
    elif class_types == 'area':
        area_classified = ts.get_area_classified()
        area_classified.to_csv('D:\\ts\\classification\\area_classified.csv', encoding='gbk')
    elif class_types == 'sme':
        sme_classified = ts.get_sme_classified()
        sme_classified.to_csv('D:\\ts\\classification\\sme_classified.csv', encoding='gbk')
    elif class_types == 'gem':
        gem_classified = ts.get_gem_classified()
        gem_classified.to_csv('D:\\ts\\classification\\gem_classified.csv', encoding='gbk')
    elif class_types == 'st':
        st_classified = ts.get_st_classified()
        st_classified.to_csv('D:\\ts\\classification\\st_classified.csv', encoding='gbk')
    elif class_types == 'hs300':
        hs300s = ts.get_hs300s()
        hs300s.to_csv('D:\\ts\\classification\\hs300s.csv', encoding='gbk')
    elif class_types == 'sz50':
        sz50s = ts.get_sz50s()
        sz50s.to_csv('D:\\ts\\classification\\sz50s.csv', encoding='gbk')
    elif class_types == 'zz500':
        zz500s = ts.get_zz500s()
        zz500s.to_csv('D:\\ts\\classification\\zz500s.csv', encoding='gbk')
    elif class_types == 'terminated':
        terminated = ts.get_terminated()
        terminated.to_csv('D:\\ts\\classification\\terminated.csv', encoding='gbk')
    elif class_types == 'suspended':
        suspended = ts.get_suspended()
        suspended.to_csv('D:\\ts\\classification\\suspended.csv', encoding='gbk')
Esempio n. 2
0
def save_300():
    list = ts.get_hs300s()
    print(list)
    list.to_csv(HS300_NAME)
    for id in list.code:
        save(id)
    print('.........end.............')
Esempio n. 3
0
def get_hs300s():
    try:
        df = ts.get_hs300s();
        engine = create_engine('mysql://*****:*****@127.0.0.1/stock?charset=utf8')
        # df.insert(0,'code','600848')
        df.to_sql('hs300s', engine, if_exists='append')
    except Exception, e:
        e.message
Esempio n. 4
0
def gen_zz800_stock_list():
    '''
    :return: 生成中证800股票代码,[code, name, weight, date]
    '''

    zz500 = ts.get_zz500s()
    hs300 = ts.get_hs300s()
    zz800 = zz500.append(hs300)
    zz800 = zz800[['code', 'name', 'weight', 'date']]
    zz800.columns = zz800.columns.str.upper()
    zz800.to_csv(config.rootPath + '/data/gen_data/zz800_codes.csv', index=False)
Esempio n. 5
0
 def storagepool(self):
     #storage zz500
     df=ts.get_zz500s()
     self.pool['zz500'].insert_many(json.loads(df.to_json(orient='records')))
     #hs300
     df=ts.get_hs300s()
     self.pool['hz300'].insert_many(json.loads(df.to_json(orient='records')))
     #zh50
     df=ts.get_sz50s()
     self.pool['sz'].insert_many(json.loads(df.to_json(orient='records')))
     #st
     df=ts.get_st_classified()
     self.pool['st'].insert_many(json.loads(df.to_json(orient='records')))
Esempio n. 6
0
 def _index_weight(self):
     #   输入列表['000300.SH','399905.SZ','000016.SH']获取对应指数成分股
     hs300 = ts.get_hs300s()
     zz500 = ts.get_zz500s()
     sz50 = ts.get_sz50s()
     hs300['index_code'] = '000300.SH'
     zz500['index_code'] = '399905.SZ'
     sz50['index_code'] = '000016.SH'
     # 汇总数据
     res = pd.concat([hs300, zz500, sz50], ignore_index=True)
     #   标准化code
     res['code'] = [i + '.SH' if i[0] == '6' else i + '.SZ' for i in res['code']]
     res['update_time'] = self.today
     return res
Esempio n. 7
0
def get_hs30s() -> object:
    """
    获取沪深30支随机股票
    return:code :股票代码
            name :股票名称
            date :日期
            weight:权重
    :return:
    """
    df = pandas.DataFrame(tushare.get_hs300s())
    shuffle = numpy.arange(0, 299, 10)
    df = df.sort_values(by='name')
    df = df.iloc[shuffle, :]
    return df
def find_csi_300_2():  # 通过ts.get_hs300s()方法来找到沪深300的code
    CSI_300_df = ts.get_hs300s()
    tickers = CSI_300_df['code'].values  # 转化为列表 002044 000961
    new_tickers = []
    for i in tickers:
        if i[0] == '0' or i[0] == '3':
            i = i + '.SZ'
        if i[0] == '6':
            i = i + '.SH'
        new_tickers.append(i)  # 601238.SH  002044.SZ
    with open('CSI_tickers.pickle', 'wb') as f:
        pickle.dump(new_tickers, f)
    print(new_tickers)
    return new_tickers
Esempio n. 9
0
def cluster():
    time = get_datetime()
    date = time.strftime('%Y-%m-%d')
    log.info(date)
    a = ts.get_hs300s()
    log.info(a)
    daima = pd.DataFrame(columns = ['code','open','close','ma5','ma10','v_ma10','turnover','volume','p_change'])
    for i in a['code']:
        try:
            s = ts.get_hist_data(i,start=date,end=date)
            s.insert(0,'code',i)
            s = s.loc[:,['code','open','close','ma5','ma10','v_ma10','turnover','volume','p_change']]
            daima = daima.append(s,ignore_index=True)
        except:
            pass
    data = daima.loc[:,['ma5','ma10','v_ma10','turnover','volume','p_change']]
    log.info(data)
    k = 9 #聚类的类别
    iteration = 500 #聚类最大循环次数
    data = data
    data_zs = 1.0*(data - data.mean())/data.std() #数据标准化
    model = KMeans(n_clusters = k, n_jobs = 9, max_iter = iteration) #分为k类, 并发数9
    model.fit(data_zs) #开始聚类
    #简单打印结果
    r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
    r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
    r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向), 得到聚类中心对应的类别下的数目
    r.columns = list(data.columns) + [u'类别数目'] #重命名表头
    log.info(r)
    
    #详细输出原始数据及其类别
    r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
    r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
    t= r.loc[:,'聚类类别']
    daima.insert(9,'聚类类别',t)
    cc = daima[(daima.聚类类别 == 7)]
    cc = cc.reset_index(drop=True)
    ee = cc.loc[:,['code']]
    dd = ee['code'].values.tolist()
    gg = []
    for j in dd:
        if j[0]  == '6':
            j = j + '.SH'
            gg.append(j)
        else:
            j = j + '.SZ'
            gg.append(j)
        
    log.info(gg)
    return gg
Esempio n. 10
0
def obtain_and_insert_hs300(con):
    """Get the composite of hs300 index and insert it to database
       args:
           con: a sqlalchemy engine connection
       return: the code of every stock and 
           a database table containing hs300 stocks and ticker
    """
    # Get hs300 from tushare
    hs300=ts.get_hs300s()
    hs300['date']=pd.to_datetime(hs300['date'])
    hs300.set_index('date',inplace=True)
    # write it to MySQl database named 'cnstock'

    hs300.to_sql('hs300',con, if_exists='replace') #dtype={'date':sqla.types.VARCHAR(12)}
Esempio n. 11
0
 def list(self, stock_block_type):
     stock_block = None
     if stock_block_type == self.industry:
         stock_block = db.get(STOCK_BLOCK_INDUSTRY)
         if stock_block is None:
             stock_block = ts.get_industry_classified()
             db.save(STOCK_BLOCK_INDUSTRY, stock_block)
     elif stock_block_type == self.concept:
         stock_block = db.get(STOCK_BLOCK_CONCEPT)
         if stock_block is None:
             stock_block = ts.get_concept_classified()
             db.save(STOCK_BLOCK_CONCEPT, stock_block)
     elif stock_block_type == self.area:
         stock_block = db.get(STOCK_BLOCK_AREA)
         if stock_block is None:
             stock_block = ts.get_area_classified()
             db.save(STOCK_BLOCK_AREA, stock_block)
     elif stock_block_type == self.sme:
         stock_block = db.get(STOCK_BLOCK_SME)
         if stock_block is None:
             stock_block = ts.get_sme_classified()
             db.save(STOCK_BLOCK_SME, stock_block)
     elif stock_block_type == self.gem:
         stock_block = db.get(STOCK_BLOCK_GEM)
         if stock_block is None:
             stock_block = ts.get_gem_classified()
             db.save(STOCK_BLOCK_GEM, stock_block)
     elif stock_block_type == self.st:
         stock_block = db.get(STOCK_BLOCK_ST)
         if stock_block is None:
             stock_block = ts.get_st_classified()
             db.save(STOCK_BLOCK_ST, stock_block)
     elif stock_block_type == self.hs300s:
         stock_block = db.get(STOCK_BLOCK_HS300S)
         if stock_block is None:
             stock_block = ts.get_hs300s()
             db.save(STOCK_BLOCK_HS300S, stock_block)
     elif stock_block_type == self.sz50s:
         stock_block = db.get(STOCK_BLOCK_SZ50S)
         if stock_block is None:
             stock_block = ts.get_sz50s()
             db.save(STOCK_BLOCK_SZ50S, stock_block)
     elif stock_block_type == self.zz500s:
         stock_block = db.get(STOCK_BLOCK_ZZ500S)
         if stock_block is None:
             stock_block = ts.get_zz500s()
             db.save(STOCK_BLOCK_ZZ500S, stock_block)
     else:
         return None
     return stock_block
Esempio n. 12
0
def getCodeBySection(plaName):
    if plaName == '深圳成指':
        sql = "select distinct code from basicinfo where section='%s'" % (
            '深市A股')
        try:
            cursor.execute(sql)
            results = cursor.fetchall()
            re = []
            for row in results:
                code = row[0]
                re.append(code)
                # print(re)
        except:
            print('get data fail')
    elif plaName == '上证指数':
        sql = "select distinct code from basicinfo where section='%s'" % (
            '沪市A股')
        try:
            cursor.execute(sql)
            results = cursor.fetchall()
            re = []
            for row in results:
                code = row[0]
                re.append(code)
                # print(re)
        except:
            print('get data fail')
    elif (plaName == '创业板' or plaName == '中小板'):
        sql = "select distinct code from basicinfo where section='%s'" % (
            plaName)
        try:
            cursor.execute(sql)
            results = cursor.fetchall()
            re = []
            for row in results:
                code = row[0]
                re.append(code)
                # print(re)
        except:
            print('get data fail')
    elif plaName == '上证50':
        df = ts.get_sz50s()
        re = list(df['code'])
        # print(re)
    elif plaName == '沪深300':
        df = ts.get_hs300s()
        re = list(df['code'])
        # print(re)
    return re
Esempio n. 13
0
    def run(self):
        df500 = ts.get_zz500s()
        df300 = ts.get_hs300s()

        df800 = pd.DataFrame(df500)
        df800 = df800.append(df300,ignore_index=True)
        df800.sort_values(by="code")

        un800 = json.loads(df800.to_json(orient="records"))

        emg = emongo()
        szCode = emg.getCollectionNames("un800")
        szCode.remove()
        szCode.insert(un800)
        emg.Close()
Esempio n. 14
0
def save_hs300s():
    df = ts.get_hs300s()
    if df == None:
        return
    hs300s_dict = df.to_dict("orient='records'")
    for data in hs300s_dict:
        code = data['code']
        stock_weight = session.query(StockWeight).filter_by(
            and_(StockWeight.code == code,
                 StockWeight.date == data['date'])).one()
        if stock_weight != None:
            continue
        else:
            logging.info("stock_weight: %s", stock_weight)
            session.add(stock_weight)
Esempio n. 15
0
 def storagepool(self):
     #storage zz500
     df = ts.get_zz500s()
     self.pool['zz500'].insert_many(json.loads(
         df.to_json(orient='records')))
     #hs300
     df = ts.get_hs300s()
     self.pool['hz300'].insert_many(json.loads(
         df.to_json(orient='records')))
     #zh50
     df = ts.get_sz50s()
     self.pool['sz'].insert_many(json.loads(df.to_json(orient='records')))
     #st
     df = ts.get_st_classified()
     self.pool['st'].insert_many(json.loads(df.to_json(orient='records')))
Esempio n. 16
0
def update_hs300(request):
    '''更新沪深300'''
    stock_hs300.objects.all().delete()

    rltobj = ts.get_hs300s()
    objlist = []
    for i in range(len(rltobj)):
        tmpobj = stock_hs300(code=rltobj.loc[i]['code'],
                             name=rltobj.loc[i]['name'],
                             date=rltobj.loc[i]['date'],
                             weight=rltobj.loc[i]['weight'])
        objlist.append(tmpobj)

    stock_hs300.objects.bulk_create(objlist)

    return HttpResponse('succ.{0}条!'.format(len(objlist)))
Esempio n. 17
0
 def start_requests(self):
     result = ts.get_hs300s()
     keywords = result['code'].tolist()
     for keyword in keywords:
         url = '{url}?keyword={keyword}'.format(url=self.search_url,
                                                keyword=keyword)
         print('正在请求:' + url)
         for page in range(self.max_page + 1):
             data = {
                 'mp': str(self.max_page),
                 'page': str(page),
             }
             yield scrapy.FormRequest(url,
                                      callback=self.parse_index,
                                      formdata=data,
                                      meta={'keyword': keyword})
Esempio n. 18
0
def save_component_stock():
    # 沪深300成份及权重
    hs300_classified = ts.get_hs300s()

    # 上证50成份股
    sz50_classified = ts.get_sz50s()

    # 中证500成份股
    zz500_classified = ts.get_zz500s()

    # 存入mysql数据库
    engine = create_engine('mysql://*****:*****@127.0.0.1/stock?charset=utf8')

    # 数据定时存入mysql
    hs300_classified.to_sql('hs300_classify', engine, if_exists='replace')
    sz50_classified.to_sql('sz50_classify', engine, if_exists='replace')
    zz500_classified.to_sql('zz500_classify', engine, if_exists='replace')
Esempio n. 19
0
def get_hs300_codes():
    s = []
    # stock
    if not os.path.exists("_stock/hs300.csv"):
        df = ts.get_hs300s()
        df.to_csv("_stock/hs300.csv")
        pass
    reader = csv.reader(open("_stock/hs300.csv"))

    for i, row in enumerate(reader):
        if i != 0:
            s.append(row[1])
            pass
        pass

    return s
    pass
def get_stock_codes(markets=['zz500s'], ipo_date=None):
    '''
    markets: list
    e.g.['sme','gem','st','hs300s','sz50s','zz500s','general'];
    ipo_date: str
    e.g.'2015-03-30'
    '''
    code_list = []
    if 'sme' in markets:  #中小板
        df = ts.get_sme_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'gem' in markets:  #创业板
        df = ts.get_gem_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'st' in markets:  #风险板
        df = ts.get_st_classified()
        codes = list(df.code)
        code_list.extend(codes)
    if 'hs300s' in markets:  #沪深300
        df = ts.get_hs300s()
        codes = list(df.code)
        code_list.extend(codes)
    if 'sz50s' in markets:  #上证50
        df = ts.get_sz50s()
        codes = list(df.code)
        code_list.extend(codes)
    if 'zz500s' in markets:  #中证500
        df = ts.get_zz500s()
        codes = list(df.code)
        code_list.extend(codes)

    if ipo_date:
        new_stock_df = ts.new_stocks()
        new_stock_df = new_stock_df[new_stock_df['ipo_date'] > ipo_date]
        new_stock_codes = list(new_stock_df.code)
        #得到输入时间之后发行的股票

        code_list = list(set(code_list))
        desired_codes = list(set(code_list) - set(new_stock_codes))
    #剔除新股

    desired_codes = list(set(code_list))

    return desired_codes
Esempio n. 21
0
def calc():
    """计算各个股票的应有持仓股数"""
    weight = ts.get_hs300s()
    hs = ts.get_k_data('hs300')
    date = str(weight.date[0])[:10]
    spot = float(hs[hs.date == date].close)
    portfolioValue = spot * 300

    weight['value'] = weight['weight'] * portfolioValue
    weight['close'] = weight.apply(getPrice, axis=1)
    weight['theoNum'] = weight['value'] / weight['close']
    weight['flag'] = weight.apply(getFlag, axis=1)

    allocateValue = weight.value.sum() - (weight.value * weight.flag).sum()
    perAllocateValue = allocateValue / weight.flag.sum()
    weight['adjustValue'] = weight.apply(adjustValue(perAllocateValue), axis=1)
    return weight
Esempio n. 22
0
def get_basic(trade_date, num=300):
    # 调用基础API获取沪深300的成分股
    shares_item300 = ts.get_hs300s()
    shares_items = shares_item300.head(num)
    data = []
    # 获取沪深300成分股的指标
    for item in shares_items.index:
        code = add_shares_type(shares_items.loc[item, 'code'])
        basic_data = tp.query('daily_basic',
                              ts_code=code,
                              trade_date=trade_date,
                              fields='trade_date,ts_code,close,pb,pe,dv_ratio')
        basic_data['name'] = shares_items.loc[item, 'name']
        data.append(basic_data)
    datas = pd.concat(data).sort_values(by='pb')  # 按市净率升幂排序
    datas.index = pd.Series([n for n in range(int(len(datas.index)))])  # 重置行索引
    return datas
def down_stk_base():
    '''
    下载时基本参数数据时,有时会出现错误提升:
          timeout: timed out
          属于正常现象,是因为网络问题,等几分钟,再次运行几次 
          '''
    rss = "tmp\\"
    #
    fss = rss + 'stk_inx0.csv'
    print(fss)
    dat = ts.get_index()
    dat.to_csv(fss, index=False, encoding='gbk', date_format='str')

    #=========
    fss = rss + 'stk_base.csv'
    print(fss)
    dat = ts.get_stock_basics()
    dat.to_csv(fss, encoding='gbk', date_format='str')

    c20 = ['code', 'name', 'industry', 'area']
    d20 = dat.loc[:, c20]
    d20['code'] = d20.index

    fss = rss + 'stk_code.csv'
    print(fss)
    d20.to_csv(fss, index=False, encoding='gbk', date_format='str')

    #sz50,上证50;hs300,沪深300;zz500,中证500
    fss = rss + 'stk_sz50.csv'
    print(fss)
    dat = ts.get_sz50s()
    if len(dat) > 3:
        dat.to_csv(fss, index=False, encoding='gbk', date_format='str')

    fss = rss + 'stk_hs300.csv'
    print(fss)
    dat = ts.get_hs300s()
    if len(dat) > 3:
        dat.to_csv(fss, index=False, encoding='gbk', date_format='str')

    fss = rss + 'stk_zz500.csv'
    print(fss)
    dat = ts.get_zz500s()
    if len(dat) > 3:
        dat.to_csv(fss, index=False, encoding='gbk', date_format='str')
def find_and_save_CSI_300():
    CSI_300_df = ts.get_hs300s()
    tickers = CSI_300_df['code'].values
    #    print(tickers)
    tickers_mod = []
    for ticker in tickers:
        if ticker[0] == '6':
            ticker = ticker + '.SH'
            tickers_mod.append(ticker)
        else:
            ticker = ticker + '.SZ'
            tickers_mod.append(ticker)
    print(tickers_mod)

    with open("CSI_tickers.pickle", "wb") as f:
        pickle.dump(tickers_mod, f)
    print(tickers_mod)
    return tickers_mod
def find_and_save_CSI_300():
    CSI_300_DF = ts.get_hs300s()
    tickers = CSI_300_DF['code'].values
    tickers_mod = []
    for ticker in tickers:
        if ticker[0] == '6':
            ticker = ticker + '.SH'
            tickers_mod.append(ticker)
        else:
            ticker = ticker + '.SZ'
            tickers_mod.append(ticker)
    # 储存文件,CSI_tickers.pickle为储存后的文件名,后缀为pickle
    # 将数据dump进文件中
    # 'wb'以二进制格式打开一个文件只用于写入
    # dump将数据通过特殊的形式转换为只有python语言认识的字符串,并写入文件
    with open('CSI_tickers.pickle', 'wb') as f:
        pickle.dump(tickers_mod, f)
    return tickers_mod
Esempio n. 26
0
    def update_stock_list(self):

        engine = self.create_db_engine(self.str_db_stock_classification)

        #update hs300(沪深300) list:
        table_hs300_list = self.table_creator.get_table_hs300_list()
        table_hs300_list.create(engine, checkfirst=True)
        print("Create %s list table ok!" % table_hs300_list.name)
        #get the list from Tushare
        hs300_list = ts.get_hs300s()
        print('get %s data ok!' % table_hs300_list.name)
        #insert list
        self.insert_to_db_no_duplicate(hs300_list, table_hs300_list.name,
                                       engine)
        print("Insert %s data ok!" % table_hs300_list.name)

        #close the engine pool
        engine.dispose()
Esempio n. 27
0
def find_chances(from_date, to_date, highest_days_n):
    def _in_list(code, l):
        for c, _ in l:
            if code == c:
                return True
        return False

    # customize
    js = get_customize_codes()
    log.info('customize stocks: %s', js)
    codes = js

    for code in get_codes(ts.get_hs300s()):
        if _in_list(code, codes):
            continue
        else:
            codes.append((code, None))

    rets = []
    cur_pos_rets = []
    with ThreadPoolExecutor(max_workers=4) as executor:
        tasks = [
            executor.submit(_loopback_stock, code, name, from_date, to_date,
                            highest_days_n) for code, name in codes
        ]
        for task in as_completed(tasks):
            stock, is_chance, cur_pos = task.result()
            if is_chance:
                rets.append(stock)

            if cur_pos <= 0.1:
                cur_pos_rets.append((cur_pos, stock))

    rets.sort(key=lambda s: s.get_benefit_rate(), reverse=True)
    log.info('==========Your chances==========')
    for stock in rets:
        log.info(stock)

    cur_pos_rets.sort(key=lambda s: s[0])
    log.info('==========Underestimate==========')
    for _, stock in cur_pos_rets:
        log.info(stock)

    return rets, cur_pos_rets
Esempio n. 28
0
def main_with_pe_roe():
    '''
    遍历所有沪深300的股票,选择市盈率低,同时,净资产收益率高的公司股票。
    '''
    to_filter_stock = ts.get_hs300s()
    # 根据市盈率,净资产收益率,持股人数(持股人数越多,随机性越强,也不容易被操作?)
    filtered_stock_info = filter_good_stocks.get_low_pe_high_roe(to_filter_stock['code'], 30, 10, 100000, 2017, 4)
    if len(filtered_stock_info) < 0:
        print('cannot find the stocks: pe<30, roe>10 in 2017-Q04')                                                                                                                                                                                                                                                                                                                                        
        return
    
    file_name = '.\\test_data\\1.code_range_'+datetime.datetime.now().strftime(date_format)+'.csv'
    final_coe_name = '.\\test_data\\1.final_code_'+datetime.datetime.now().strftime(date_format)+'.csv'
    filtered_stock_info.to_csv(file_name, sep=',', index=True)
    
    gold_cross_stock = DataFrame({'code':[], 'name':[], 'macd':[], 'pe':[], 'roe':[]})
    for code in filtered_stock_info['code']:
        #code = '%s, %s'%(code, filtered_stock_info.loc[code, 'name'])
        print('%s:%s'%(code, filtered_stock_info.loc[code, 'name']), end=': ')
        his_data = get_macd_by_time_order(code)
        if his_data is None:
            continue
        # 筛选出指定日期内,出现过黄金交叉的股票
        gold_date = has_golden_cross(his_data,  (datetime.datetime.now() - datetime.timedelta(7)).strftime(date_format), datetime.datetime.now().strftime(date_format))
        if gold_date is not None:
            print('%s:%s has the gold cross in %s~%s'%(code, filtered_stock_info.loc[code, 'name'], gold_date[0], gold_date[1]))
            gold_cross_stock.ix[code] = [code, filtered_stock_info.loc[code, 'name'], \
                                         his_data['macd'][-1], filtered_stock_info.loc[code,'pe'],\
                                         filtered_stock_info.loc[code,'roe']]
          
        # 筛选macd连续增长的股票    
        const_incr_date = const_incr_macd(his_data, (datetime.datetime.now() - datetime.timedelta(7)).strftime(date_format), datetime.datetime.now().strftime(date_format), 4)
        if const_incr_date is not None:
            print('%s:%s has the gold cross in %s~%s'%(code, filtered_stock_info.loc[code, 'name'], const_incr_date[0], const_incr_date[-1]))
            gold_cross_stock.ix[code] = [code, filtered_stock_info.loc[code, 'name'], \
                                         his_data['macd'][-1], filtered_stock_info.loc[code,'pe'],\
                                         filtered_stock_info.loc[code,'roe']]
            
        del(his_data)
    
    print("The Gold cross stocks are:")
    for key in gold_cross_stock:
        print("%s,%s"%(key, gold_cross_stock[key]))
    gold_cross_stock.to_csv(final_coe_name, sep=',', index = True)
Esempio n. 29
0
def save_hs300s():
    """获取沪深300当前成份股及所占权重"""
    logger.info('Begin get and save hs300 clssified.')
    try:
        data_df = ts.get_hs300s()
        if data_df is not None and not data_df.empty:
            data = data_df.values
            data_dicts = [{
                'code': row[0],
                'name': row[1],
                'date': row[2],
                'weight': row[3]
            } for row in data]
            Hs300.insert_many(data_dicts).execute()
            logger.info('Success get and save hs300 classified.')
        else:
            logger.warn('Empty get and save hs300 classified.')
    except Exception as e:
        logger.exception('Error get and save hs300 classified.')
Esempio n. 30
0
def set_universe(code, refDate=None):
    if Settings.data_source == DataSource.WIND:
        from WindPy import w
        if not w.isconnected():
            w.start()
        if not refDate:
            rawData = w.wset('IndexConstituent', 'windcode='+convert2WindSymbol(code), 'field=wind_code')
        else:
            rawData = w.wset('IndexConstituent', 'date='+refDate, 'windcode='+convert2WindSymbol(code), 'field=wind_code')
        if len(rawData.Data) == 0:
            return
        # convert to .xshg/.xshe suffix
        idx = [s.replace('SH', 'xshg') for s in rawData.Data[0]]
        idx = [s.replace('SZ', 'xshe') for s in idx]
        return idx
    elif Settings.data_source == DataSource.TUSHARE:
        import tushare as ts
        tsSymbol = code.split('.')[0]
        if tsSymbol == '000300':
            idx = ts.get_hs300s()['code']
        elif tsSymbol == '000016':
            idx = ts.get_sz50s()['code']
        elif tsSymbol == '000905' or tsSymbol == '399905':
            idx = ts.get_zz500s()['code']
        else:
            raise NotImplementedError
        idx = [equityCodeToSecurityID(s) for s in idx.tolist()]
        return idx

    elif Settings.data_source != DataSource.DXDataCenter:
        import os
        import tushare as ts

        try:
            ts.set_token(os.environ['DATAYES_TOKEN'])
        except KeyError:
            raise
        idx = ts.Idx()
        return list(idx.IdxCons(secID=code, field='consID')['consID'])
    else:
        from DataAPI import api
        data = api.GetIndexConstitutionInfo(code, refDate=refDate).sort_values('conSecurityID')
        return list(data.conSecurityID)
def get_BP_data():
    ## 此函数获得股票池的1/BP(频率:天)的数据,并将所有股票单独保存在一个csv里

    #获取基础信息数据,包括股票代码、名称、上市日期、退市日期等
    ## pool = pro.stock_basic(exchange='',
    ##                       list_status='L',
    ##                       adj='qfq',
    ##                       fields='ts_code,symbol,name,area,industry,fullname,list_date, market,exchange,is_hs')
    ## print(pool.head())
    
    ## 由题给要求,我们使用沪深300作为选股池
    pool = ts.get_hs300s()


    # 根据basic的信息选取板块获取股票池
    ## pool = pool[pool['market'].isin(['科创板'])].reset_index()
    
    print('需爬取股票总数:', len(pool)+1)
    j = 1
    for i in pool.code:
        print('正在获取第%d家,股票代码%s.SZ' % (j, i))
        if j==1:
          df = pro.daily_basic(ts_code=i+'.SZ', start_date=startdate, end_date=enddate, 
                               fields='ts_code,trade_date,turnover_rate,volume_ratio,pe,pb')
          if len(df)!=0:
            industry = pro.stock_basic(ts_code = i+'.SZ',exchange='', list_status='L', fields='industry')['industry'][0]
            df['industry'] = industry
        else:
          df2 = pro.daily_basic(ts_code=i+'.SZ', start_date=startdate, end_date=enddate, 
                                    fields='ts_code,trade_date,close, turnover_rate,volume_ratio,pe,pb')
          if len(df2)!=0:
            industry = pro.stock_basic(ts_code = i+'.SZ',exchange='', list_status='L', fields='industry')['industry'][0]
            df2['industry'] = industry
            df = df.append(df2)
        
        j += 1
    #设定双重重索引的数据格式
    df=df.set_index(['trade_date','ts_code'])
    #根据第一索引排序
    df=df.sort_index()
    path = os.path.join('BP_Data.csv')
    df.to_csv(path, index=True)
    return df
Esempio n. 32
0
 def update_HS300s(self):
     '''
     基于tushare,更新HS300s指标数据
     :return:
     '''
     data = ts.get_hs300s()
     if isinstance(data, pd.DataFrame) and not data.empty:
         for i in range(len(data)):
             id = '%s/%s' % (data.loc[i]['code'], data.loc[i]['date'])
             HS300s_item = HS300s(id = id,
                                  security = data.loc[i]['code'],
                                  name = data.loc[i]['name'],
                                  date = data.loc[i]['date'],
                                  weight = data.loc[i]['weight'])
             try:
                 self._session.query(HS300s).filter(HS300s.id == id).one()
             except:
                 self._session.add(HS300s_item)
             self._session.commit()
Esempio n. 33
0
 def get_stocklist_by_type(self, trade_date, type):
     print 'get_stocklist_by_type-------' + type
     df = None
     if type == '000016.SH':
         df = ts.get_sz50s()
     elif type == '000300.SH':
         df = ts.get_hs300s()
     elif type == '399006.SZ':
         df = ts.get_gem_classified()
     elif type == '000905.SH':
         df = ts.get_zz500s()
     print '----------------------------------------------------------'
     print df
     print '----------------------------------------------------------'
     if not df is None:
         stocklist = df.code.tolist()
     else:
         stocklist = []
     return stocklist
Esempio n. 34
0
 def preload():
     stock_block = ts.get_industry_classified()
     db.save(STOCK_BLOCK_INDUSTRY, stock_block)
     stock_block = ts.get_concept_classified()
     db.save(STOCK_BLOCK_CONCEPT, stock_block)
     stock_block = ts.get_area_classified()
     db.save(STOCK_BLOCK_AREA, stock_block)
     stock_block = ts.get_sme_classified()
     db.save(STOCK_BLOCK_SME, stock_block)
     stock_block = ts.get_gem_classified()
     db.save(STOCK_BLOCK_GEM, stock_block)
     stock_block = ts.get_st_classified()
     db.save(STOCK_BLOCK_ST, stock_block)
     stock_block = ts.get_hs300s()
     db.save(STOCK_BLOCK_HS300S, stock_block)
     stock_block = ts.get_sz50s()
     db.save(STOCK_BLOCK_SZ50S, stock_block)
     stock_block = ts.get_zz500s()
     db.save(STOCK_BLOCK_ZZ500S, stock_block)
Esempio n. 35
0
def get_universe(symbol):
    '''
    获取**当前**全A、指定板块、指数、ST的成分股代码。
    
    Parameters
    -----------
        symbol 获取类型
    Returns
    ----------
        list [ticker,...]
    Notes
    ---------
    'A' 
        全A股
    'st' 
        st股票
    'hs300' 
        沪深300成分股
    'cyb' 
        创业板成分股
    'sz50' 
        上证50成分股
    'A-st' 
        剔除st股票后的全A股
    
    '''
    if symbol == 'A':
        return ts.get_stock_basics().index.values.tolist()
    if symbol == 'st':
        return ts.get_st_classified()['code'].values.tolist()
    if symbol == 'hs300':
        return ts.get_hs300s()['code'].values.tolist()
    if symbol == 'cyb':
        return ts.get_gem_classified()['code'].values.tolist()
    if symbol == 'sz50':
        return ts.get_sz50s()['code'].values.tolist()
    if symbol == 'A-st':
        A = set(ts.get_stock_basics().index.values.tolist())
        ST = set(ts.get_st_classified()['code'].values.tolist())
        for st in ST:
            A.discard(st)        
        return list(A)
Esempio n. 36
0
def get_stockcode_list(dataset=None, update=False):

    filepath = dataset + '.csv'
    codefilepath = os.path.join(rootDir, 'codelist', filepath)

    if (os.path.exists(codefilepath) and update == False):
        codelist = pd.read_csv(codefilepath, encoding='gbk')
        return codelist

    if (dataset == 'zxb'):
        codelist = ts.get_sme_classified()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'cyb'):
        codelist = ts.get_gem_classified()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'hs300'):
        codelist = ts.get_hs300s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'sz50'):
        codelist = ts.get_sz50s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'zz500'):
        codelist = ts.get_zz500s()
        codelist = codelist[['code', 'name']]
        codelist.to_csv(codefilepath)
        return codelist
    elif (dataset == 'whole'):
        codelist = ts.get_today_all()
        codelist = codelist[['code', 'name']]

        codelist.to_csv(codefilepath)

        return codelist
Esempio n. 37
0
def getStockClassfied():
    filepath = 'f:\\stockdata\\股票分类数据\\'
    index = 0
    # 行业分类
    df = ts.get_industry_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1

    # 概念分类
    df = ts.get_concept_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1

    # 地域分类
    df = ts.get_area_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 中小板分类
    df = ts.get_sme_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 创业板分类
    df = ts.get_gem_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 风险警示板分类
    df = ts.get_st_classified()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 沪深300成份及权重
    df = ts.get_hs300s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 上证50成份股
    df = ts.get_sz50s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
    # 中证500成份股
    df = ts.get_zz500s()
    saveCsv(df, filepath, stockClassList, index)
    index += 1
Esempio n. 38
0
time.sleep(1)
# 中小板块
smalls = ts.get_sme_classified() 

time.sleep(1)
# 创业版
news = ts.get_gem_classified()

time.sleep(1)
# st版块
sts = ts.get_st_classified()

time.sleep(1)
# 沪深300
hss = ts.get_hs300s()

time.sleep(1)
# 上证50
szs = ts.get_sz50s()

time.sleep(1)
# 中证500
zzs = ts.get_zz500s()

time.sleep(1)
# 终止上市
tss = ts.get_terminated()

time.sleep(1)
# 暂停上市
Esempio n. 39
0
def syncHS300S():
    hs300s_df = ts.get_hs300s()
    hs300s_df.to_csv(config.HS300_CodePath, encoding="utf-8")
    saveDataFileByCode(hs300s_df)
    print("sync and save HS300 done!")
Esempio n. 40
0
def get_hs300s_info(file_path):
    hs300s_info = ts.get_hs300s()
    hs300s_info.to_csv(file_path, encoding='utf-8')
    print '\ndownload hs300s info finished\n'
Esempio n. 41
0
                f.write('\n') 
            
            print  str(time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))),stockCode,'is finished'        
            stockList.pop()  
        except URLError,e:
            print 'Error',stockCode,str(e)
            stockList.pop()
            continue         
        except BaseException, e:
            print stockCode,str(e)
            logger.error('Code: '+stockCode+ ' : '+str(e))     
            stockList.pop()  
            continue                  

    
    

    
    
if __name__ == '__main__':
    fileName = r'd:\stock\stockBZChoose.csv'
    startDate = '2014-01-01'
    endDate = str(time.strftime("%Y-%m-%d",time.localtime(time.time())))
    specialDate = '2015-01-01'
#     stockCode = '600030'
#     print getStockInfo(startDate, endDate, stockCode,'2015-01-01')   
   
    df = ts.get_hs300s()
    stockCodeList = list(df.code)
    chooseBZStock(startDate, endDate,specialDate,stockCodeList,fileName)
Esempio n. 42
0
def load_company_industry_info(): 
    #下载加载行业分类数据
    try:
        rs=ts.get_industry_classified()
        sql.write_frame(rs, "company_industry_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载公司行业分类信息ok")
    except:
        print("下载公司行业分类信息出错")
    #下载加载概念分类数据
    try:
        rs=ts.get_concept_classified()
        sql.write_frame(rs, "company_concept_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("载公司概念分类信息ok")
    except:
        print("下载公司概念分类信息出错")
    #下载加载地域分类数据
    try:
        rs=ts.get_area_classified()
        sql.write_frame(rs, "company_area_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载公司区域分类信息ok")
    except:
        print("下载公司区域分类信息出错")
    #下载加载中小板分类数据
    try:
        rs=ts.get_sme_classified()
        sql.write_frame(rs, "company_sme_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载中小板分类数据ok")
    except:
        print("下载中小板分类数据出错")
    #下载加载创业板分类数据
    try:
        rs=ts.get_gem_classified()
        sql.write_frame(rs, "company_gem_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载创业板分类数据ok")
    except:
        print("下载创业板分类数据出错")
    #下载加载st板分类数据
    try:
        rs=ts.get_st_classified()
        sql.write_frame(rs, "company_st_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载st板分类数据ok")
    except:
        print("下载st板分类数据出错")
    #下载加载沪深300板分类数据
    try:
        rs=ts.get_hs300s()
        sql.write_frame(rs, "company_hs300_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载沪深300板分类数据ok")
    except:
        print("下载加载沪深300板分类数据出错")
    #下载加载上证50板分类数据
    try:
        rs=ts.get_sz50s()
        sql.write_frame(rs, "company_sz50_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载上证50板分类数据ok")
    except:
        print("下载加载上证50板分类数据出错")
    #下载加载中证500板分类数据
    try:
        rs=ts.get_zz500s()
        sql.write_frame(rs, "company_zz500_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载中证500板分类数据ok")
    except:
        print("下载加载中证500板分类数据出错")
    #下载加载终止上市分类数据
    try:
        rs=ts.get_terminated()
        sql.write_frame(rs, "company_terminated_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载终止上市分类数据ok")
    except:
        print("下载加载终止上市分类数据出错")
    #下载加载暂停上市分类数据
    try:
        rs=ts.get_suspended()
        sql.write_frame(rs, "company_suspended_classified", con=conn_company_classified , flavor='mysql', if_exists='replace',index=True)
        print("下载加载暂停上市分类数据ok")
    except:
        print("下载加载暂停上市分类数据出错")
Esempio n. 43
0
"""
stock_get_data.py
Created by Huaizheng ZHANG on 6.27.
Copyright (c) 2015 zhzHNN. All rights reserved.

"""

import tushare as ts
import os
import urllib2
if os.path.isdir('Data'):
	pass
else:
	os.mkdir('Data')

hs300 = ts.get_hs300s()

for i in xrange(0,281):
	dirName = hs300['code'][i]
	if os.path.isdir('Data/'+dirName):
		pass
	else:
		os.mkdir('Data/'+dirName)
	try:
		print u'当前正在获取' + dirName + u'前复权训练数据'
		trainData = ts.get_h_data(hs300['code'][i], start='2011-01-04',end='2012-12-31')
		trainName = dirName + u'trainData'.encode('utf-8') + '.csv'
		if os.path.exists('Data/'+ dirName + '/' + trainName):
			os.remove('Data/'+ dirName + '/' + trainName)
		trainData.to_csv('Data/'+ dirName + '/' + trainName, encoding='utf8')
	except urllib2.URLError, e:
Esempio n. 44
0
# Note SME is a pd.series data type
SME = ts.get_sme_classified()
SME.to_csv('./ASHR/DATA/SME.csv', index = False)

# Growth Enterprise Market
GEM = ts.get_gem_classified()
GEM.to_csv('./ASHR/DATA/GEM.csv', index = False)

# ST Enterprise
ST = ts.get_st_classified()
ST.to_csv('./ASHR/DATA/ST.csv', index = False)

ts.get_h_data()

# HS 300
HS300S = ts.get_hs300s()
HS300S.to_csv('./ASHR/DATA/HS300S.csv', index = False)

# SZ 50
SZ50S = ts.get_sz50s()
SZ50S.to_csv('./ASHR/DATA/SZ50S.csv', index = False)

# ZZ 500
ZZ500S = ts.get_zz500s()
ZZ500S.to_csv('./ASHR/DATA/ZZ500S.csv', index = False)

#################
# Fund Holdings #
#################

# TODO Data is available quarterly
Esempio n. 45
0
def get_hs300s_history():
    hs300s = ts.get_hs300s()
    return get_data_by_column(hs300s)
Esempio n. 46
0
Created on 2015年6月4日

@author: Administrator
'''
import tushare as ts
# 行业分类
ts.get_industry_classified()

# 概念分类
ts.get_concept_classified()

# 地域分类
ts.get_area_classified()

# 获取沪深300当前成份股及所占权重
ts.get_hs300s()

# 获取中小板股票数据,即查找所有002开头的股票
ts.get_sme_classified()

# 获取创业板股票数据,即查找所有300开头的股票
ts.get_gem_classified()

# 获取风险警示板股票数据,即查找所有st股票
ts.get_st_classified()

# 获取上证50成份股
ts.get_sz50s()

# 获取中证500成份股
ts.get_zz500s()