0.558, 0.641, 0.302, 0.091, -0.389, 1.997, 0.475, 0.226, 0.404, -1.476, 0.051, 0, 0, 0 ] student_answers = [] import numpy as np x, y = np.loadtxt("results.csv", delimiter=",", usecols=(0, 1), unpack=True, skiprows=1) x = list(x) y = list(y) test_case_1 = A2.mean(x) student_answers.append(test_case_1) test_case_2 = A2.median(x) student_answers.append(test_case_2) test_case_3 = A2.standard_deviation(x) student_answers.append(test_case_3) test_case_4 = A2.variance(x) student_answers.append(test_case_4) test_case_5 = A2.skewness(x) student_answers.append(test_case_5) test_case_6 = A2.kurtosis(x)
actual_answers = [ 0.558, 0.641, 0.302, 0.091, -0.389, 1.997, 0.475, 0.226, 0.404, -1.476, 0.051, 0, 0, 0 ] student_answers = [] x, y = np.loadtxt( "C:/Users/RISHABH AGARWAL/Downloads/SEM 5/CS384-Python/CS384_1801EE40/Assignment2/results.csv", delimiter=",", usecols=(0, 1), unpack=True, skiprows=1) x = list(x) y = list(y) test_case_1 = A2.mean(x) student_answers.append(test_case_1) test_case_2 = A2.median(x) student_answers.append(test_case_2) test_case_3 = A2.standard_deviation(x) student_answers.append(test_case_3) test_case_4 = A2.variance(x) student_answers.append(test_case_4) test_case_5 = A2.skewness(x) student_answers.append(test_case_5) test_case_6 = A2.kurtosis(x)