Esempio n. 1
0
def main_sensitivity_analysis(config=Config()):
    # -------------------------------Reading data-----------------------------------
    reader = Reader()
    writer = H5Writer()
    head = reader.read_head(config.input.HEAD)
    # --------------------------Hypothesis definition-----------------------------------
    n_samples = 100
    # Manual definition of hypothesis...:
    x0_indices = [20]
    x0_values = [0.9]
    e_indices = [70]
    e_values = [0.9]
    disease_indices = x0_indices + e_indices
    n_disease = len(disease_indices)
    n_x0 = len(x0_indices)
    n_e = len(e_indices)
    all_regions_indices = np.array(range(head.connectivity.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()
    n_healthy = len(healthy_indices)
    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
    hyp_x0_E = HypothesisBuilder(
        head.connectivity.number_of_regions).set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()
    # Now running the sensitivity analysis:
    logger.info("running sensitivity analysis PSE LSA...")
    for m in METHODS:
        try:
            model_configuration_builder, model_configuration, lsa_service, lsa_hypothesis, sa_results, pse_results = \
                sensitivity_analysis_pse_from_hypothesis(hyp_x0_E,
                                                         head.connectivity.normalized_weights,
                                                         head.connectivity.region_labels,
                                                         n_samples, method=m, param_range=0.1,
                                                         global_coupling=[{"indices": all_regions_indices,
                                                                           "low": 0.0, "high": 2 * K_UNSCALED_DEF}],
                                                         healthy_regions_parameters=[
                                                             {"name": "x0_values", "indices": healthy_indices}],
                                                         config=config, save_services=True)
            Plotter(config).plot_lsa(
                lsa_hypothesis,
                model_configuration,
                lsa_service.weighted_eigenvector_sum,
                lsa_service.eigen_vectors_number,
                region_labels=head.connectivity.region_labels,
                pse_results=pse_results,
                title=m + "_PSE_LSA_overview_" + lsa_hypothesis.name,
                lsa_service=lsa_service)
            # , show_flag=True, save_flag=False
            result_file = os.path.join(
                config.out.FOLDER_RES,
                m + "_PSE_LSA_results_" + lsa_hypothesis.name + ".h5")
            writer.write_dictionary(pse_results, result_file)
            result_file = os.path.join(
                config.out.FOLDER_RES,
                m + "_SA_LSA_results_" + lsa_hypothesis.name + ".h5")
            writer.write_dictionary(sa_results, result_file)
        except:
            logger.warning("Method " + m + " failed!")
Esempio n. 2
0
def main_pse(config=Config()):
    # -------------------------------Reading data-----------------------------------
    reader = Reader()
    writer = H5Writer()
    head = reader.read_head(config.input.HEAD)
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)

    # --------------------------Manual Hypothesis definition-----------------------------------
    n_samples = 100
    x0_indices = [20]
    x0_values = [0.9]
    e_indices = [70]
    e_values = [0.9]
    disease_indices = x0_indices + e_indices
    n_disease = len(disease_indices)

    n_x0 = len(x0_indices)
    n_e = len(e_indices)
    all_regions_indices = np.array(range(head.number_of_regions))
    healthy_indices = np.delete(all_regions_indices, disease_indices).tolist()
    n_healthy = len(healthy_indices)
    # This is an example of x0_values mixed Excitability and Epileptogenicity Hypothesis:
    hyp_x0_E = HypothesisBuilder(
        head.connectivity.number_of_regions).set_x0_hypothesis(
            x0_indices,
            x0_values).set_e_hypothesis(e_indices,
                                        e_values).build_hypothesis()

    # Now running the parameter search analysis:
    logger.info("running PSE LSA...")
    model_config, lsa_service, lsa_hypothesis, pse_res = pse_from_hypothesis(
        hyp_x0_E,
        head.connectivity.normalized_weights,
        head.connectivity.region_labels,
        n_samples,
        param_range=0.1,
        global_coupling=[{
            "indices": all_regions_indices
        }],
        healthy_regions_parameters=[{
            "name": "x0_values",
            "indices": healthy_indices
        }],
        save_services=True)[:4]

    logger.info("Plotting LSA...")
    Plotter(config).plot_lsa(lsa_hypothesis,
                             model_config,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             region_labels=head.connectivity.region_labels,
                             pse_results=pse_res,
                             lsa_service=lsa_service)

    logger.info("Saving LSA results ...")
    writer.write_dictionary(
        pse_res,
        os.path.join(config.out.FOLDER_RES,
                     lsa_hypothesis.name + "_PSE_LSA_results.h5"))
def set_empirical_data(empirical_file,
                       ts_file,
                       head,
                       sensors_lbls,
                       sensor_id=0,
                       seizure_length=SEIZURE_LENGTH,
                       times_on_off=[],
                       time_units="ms",
                       label_strip_fun=None,
                       preprocessing=TARGET_DATA_PREPROCESSING,
                       low_hpf=LOW_HPF,
                       high_hpf=HIGH_HPF,
                       low_lpf=LOW_LPF,
                       high_lpf=HIGH_LPF,
                       bipolar=BIPOLAR,
                       win_len_ratio=WIN_LEN_RATIO,
                       plotter=None,
                       title_prefix=""):
    try:
        return H5Reader().read_timeseries(ts_file)
    except:
        seizure_name = os.path.basename(empirical_file).split(".")[0]
        if title_prefix.find(seizure_name) < 0:
            title_prefix = title_prefix + seizure_name
        # ... or preprocess empirical data for the first time:
        if len(sensors_lbls) == 0:
            sensors_lbls = head.get_sensors_by_index(
                sensor_ids=sensor_id).labels
        signals = prepare_seeg_observable_from_mne_file(
            empirical_file, head.get_sensors_by_index(sensor_ids=sensor_id),
            sensors_lbls, seizure_length, times_on_off, time_units,
            label_strip_fun, preprocessing, low_hpf, high_hpf, low_lpf,
            high_lpf, bipolar, win_len_ratio, plotter, title_prefix)
        H5Writer().write_timeseries(signals, ts_file)
    move_overwrite_files_to_folder_with_wildcard(
        os.path.join(plotter.config.out.FOLDER_FIGURES,
                     "fitData_EmpiricalSEEG"),
        os.path.join(plotter.config.out.FOLDER_FIGURES,
                     title_prefix.replace(" ", "_")) + "*")
    return signals
Esempio n. 4
0
def from_head_to_hypotheses(ep_name, config, plot_head=False):
    # -------------------------------Reading model_data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    if plot_head:
        Plotter(config).plot_head(head)
    # --------------------------Hypothesis definition-----------------------------------
    # # Manual definition of hypothesis...:
    # x0_indices = [20]
    # x0_values = [0.9]
    # e_indices = [70]
    # e_values = [0.9]
    # disease_values = x0_values + e_values
    # disease_indices = x0_indices + e_indices
    # ...or reading a custom file:
    # FOLDER_RES = os.path.join(data_folder, ep_name)

    hypo_builder = HypothesisBuilder(head.connectivity.number_of_regions,
                                     config=config).set_normalize(0.95)

    # This is an example of Excitability Hypothesis:
    hyp_x0 = hypo_builder.build_hypothesis_from_file(ep_name)

    # This is an example of Epileptogenicity Hypothesis:
    hyp_E = hypo_builder.build_hypothesis_from_file(
        ep_name, e_indices=hyp_x0.x0_indices)

    # This is an example of Mixed Hypothesis:
    x0_indices = [hyp_x0.x0_indices[-1]]
    x0_values = [hyp_x0.x0_values[-1]]
    e_indices = hyp_x0.x0_indices[0:-1].tolist()
    e_values = hyp_x0.x0_values[0:-1].tolist()
    hyp_x0_E = hypo_builder.set_x0_hypothesis(x0_indices, x0_values). \
                                set_e_hypothesis(e_indices, e_values).build_hypothesis()

    hypos = (hyp_x0, hyp_E, hyp_x0_E)

    return head, hypos
Esempio n. 5
0
def main_vep(config=Config(),
             ep_name=EP_NAME,
             K_unscaled=K_UNSCALED_DEF,
             ep_indices=[],
             hyp_norm=0.99,
             manual_hypos=[],
             sim_type="paper",
             pse_flag=PSE_FLAG,
             sa_pse_flag=SA_PSE_FLAG,
             sim_flag=SIM_FLAG,
             n_samples=100,
             test_write_read=False):
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    # -------------------------------Reading data-----------------------------------
    reader = TVBReader() if config.input.IS_TVB_MODE else H5Reader()
    writer = H5Writer()
    plotter = Plotter(config)
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    plotter.plot_head(head)
    if test_write_read:
        writer.write_head(head, os.path.join(config.out.FOLDER_RES, "Head"))
    # --------------------------Hypothesis definition-----------------------------------

    hypotheses = []
    # Reading a h5 file:

    if len(ep_name) > 0:
        # For an Excitability Hypothesis you leave e_indices empty
        # For a Mixed Hypothesis: you give as e_indices some indices for values > 0
        # For an Epileptogenicity Hypothesis: you give as e_indices all indices for values > 0
        hyp_file = HypothesisBuilder(head.connectivity.number_of_regions, config=config).set_normalize(hyp_norm). \
            build_hypothesis_from_file(ep_name, e_indices=ep_indices)
        hyp_file.name += ep_name
        # print(hyp_file.string_regions_disease(head.connectivity.region_labels))
        hypotheses.append(hyp_file)

    hypotheses += manual_hypos

    # --------------------------Hypothesis and LSA-----------------------------------
    for hyp in hypotheses:
        logger.info("\n\nRunning hypothesis: " + hyp.name)

        all_regions_indices = np.array(range(head.number_of_regions))
        healthy_indices = np.delete(all_regions_indices,
                                    hyp.regions_disease_indices).tolist()

        logger.info("\n\nCreating model configuration...")
        model_config_builder = ModelConfigurationBuilder("EpileptorDP2D", head.connectivity, K_unscaled=K_unscaled). \
                                    set_parameter("tau1", TAU1_DEF).set_parameter("tau0", TAU0_DEF)
        mcs_file = os.path.join(config.out.FOLDER_RES,
                                hyp.name + "_model_config_builder.h5")
        writer.write_model_configuration_builder(model_config_builder,
                                                 mcs_file)
        if test_write_read:
            logger.info(
                "Written and read model configuration builders are identical?: "
                + str(
                    assert_equal_objects(
                        model_config_builder,
                        reader.read_model_configuration_builder(mcs_file),
                        logger=logger)))
        # Fix healthy regions to default equilibria:
        # model_configuration = \
        #        model_config_builder.build_model_from_E_hypothesis(hyp)
        # Fix healthy regions to default x0s:
        model_configuration = model_config_builder.build_model_from_hypothesis(
            hyp)
        mc_path = os.path.join(config.out.FOLDER_RES,
                               hyp.name + "_ModelConfig.h5")
        writer.write_model_configuration(model_configuration, mc_path)
        if test_write_read:
            logger.info(
                "Written and read model configuration are identical?: " + str(
                    assert_equal_objects(model_configuration,
                                         reader.read_model_configuration(
                                             mc_path),
                                         logger=logger)))
        # Plot nullclines and equilibria of model configuration
        plotter.plot_state_space(model_configuration,
                                 head.connectivity.region_labels,
                                 special_idx=hyp.regions_disease_indices,
                                 figure_name=hyp.name + "_StateSpace")

        logger.info("\n\nRunning LSA...")
        lsa_service = LSAService(eigen_vectors_number=1)
        lsa_hypothesis = lsa_service.run_lsa(hyp, model_configuration)

        lsa_path = os.path.join(config.out.FOLDER_RES,
                                lsa_hypothesis.name + "_LSA.h5")
        lsa_config_path = os.path.join(config.out.FOLDER_RES,
                                       lsa_hypothesis.name + "_LSAConfig.h5")
        writer.write_hypothesis(lsa_hypothesis, lsa_path)
        writer.write_lsa_service(lsa_service, lsa_config_path)
        if test_write_read:
            logger.info("Written and read LSA services are identical?: " + str(
                assert_equal_objects(lsa_service,
                                     reader.read_lsa_service(lsa_config_path),
                                     logger=logger)))
            logger.info(
                "Written and read LSA hypotheses are identical (no input check)?: "
                + str(
                    assert_equal_objects(lsa_hypothesis,
                                         reader.read_hypothesis(lsa_path),
                                         logger=logger)))
        plotter.plot_lsa(lsa_hypothesis,
                         model_configuration,
                         lsa_service.weighted_eigenvector_sum,
                         lsa_service.eigen_vectors_number,
                         head.connectivity.region_labels,
                         None,
                         lsa_service=lsa_service)

        if pse_flag:
            # --------------Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nRunning PSE LSA...")
            pse_results = pse_from_lsa_hypothesis(
                n_samples,
                lsa_hypothesis,
                model_configuration.connectivity,
                model_config_builder,
                lsa_service,
                head.connectivity.region_labels,
                param_range=0.1,
                global_coupling=[{
                    "indices": all_regions_indices
                }],
                healthy_regions_parameters=[{
                    "name": "x0_values",
                    "indices": healthy_indices
                }],
                logger=logger,
                save_flag=True)[0]
            plotter.plot_lsa(lsa_hypothesis, model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels, pse_results)

            pse_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_PSE_LSA_results.h5")
            writer.write_dictionary(pse_results, pse_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_results,
                                             reader.read_dictionary(
                                                 pse_lsa_path),
                                             logger=logger)))

        if sa_pse_flag:
            # --------------Sensitivity Analysis Parameter Search Exploration (PSE)-------------------------------
            logger.info("\n\nrunning sensitivity analysis PSE LSA...")
            sa_results, pse_sa_results = \
                sensitivity_analysis_pse_from_lsa_hypothesis(n_samples, lsa_hypothesis,
                                                             model_configuration.connectivity,
                                                             model_config_builder, lsa_service,
                                                             head.connectivity.region_labels,
                                                             method="sobol", param_range=0.1,
                                                             global_coupling=[{"indices": all_regions_indices,
                                                                               "bounds": [0.0, 2 *
                                                                                          model_config_builder.K_unscaled[
                                                                                              0]]}],
                                                             healthy_regions_parameters=[
                                                                 {"name": "x0_values", "indices": healthy_indices}],
                                                             config=config)
            plotter.plot_lsa(lsa_hypothesis,
                             model_configuration,
                             lsa_service.weighted_eigenvector_sum,
                             lsa_service.eigen_vectors_number,
                             head.connectivity.region_labels,
                             pse_sa_results,
                             title="SA PSE Hypothesis Overview")

            sa_pse_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_PSE_LSA_results.h5")
            sa_lsa_path = os.path.join(
                config.out.FOLDER_RES,
                lsa_hypothesis.name + "_SA_LSA_results.h5")
            writer.write_dictionary(pse_sa_results, sa_pse_path)
            writer.write_dictionary(sa_results, sa_lsa_path)
            if test_write_read:
                logger.info(
                    "Written and read sensitivity analysis results are identical?: "
                    + str(
                        assert_equal_objects(sa_results,
                                             reader.read_dictionary(
                                                 sa_lsa_path),
                                             logger=logger)))
                logger.info(
                    "Written and read sensitivity analysis parameter search results are identical?: "
                    + str(
                        assert_equal_objects(pse_sa_results,
                                             reader.read_dictionary(
                                                 sa_pse_path),
                                             logger=logger)))

        if sim_flag:
            # --------------------------Simulation preparations-----------------------------------
            # If you choose model...
            # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
            # EpileptorDP: similar to the TVB Epileptor + optional variations,
            # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
            # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
            #      -x0, Iext1, Iext2, slope and K become noisy state variables,
            #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
            #      -correlated noise is also used
            # We don't want any time delays for the moment
            head.connectivity.tract_lengths *= config.simulator.USE_TIME_DELAYS_FLAG
            sim_types = ensure_list(sim_type)
            for sim_type in sim_types:
                # ------------------------------Simulation--------------------------------------
                logger.info(
                    "\n\nConfiguring %s simulation from model_configuration..."
                    % sim_type)
                if isequal_string(sim_type, "realistic"):
                    sim_builder = SimulatorBuilder(model_configuration).set_model("EpileptorDPrealistic"). \
                        set_fs(2048.0).set_simulation_length(60000.0)
                    sim_builder.model_config.tau0 = 60000.0
                    sim_builder.model_config.tau1 = 0.2
                    sim_builder.model_config.slope = 0.25
                    sim_builder.model_config.pmode = np.array([PMODE_DEF])
                    sim_settings = sim_builder.build_sim_settings()
                    sim_settings.noise_type = COLORED_NOISE
                    sim_settings.noise_ntau = 20
                    # Necessary a more stable integrator:
                    sim_settings.integrator_type = "Dop853Stochastic"
                elif isequal_string(sim_type, "fitting"):
                    sim_builder = SimulatorBuilder(model_configuration).set_model("EpileptorDP2D"). \
                        set_fs(2048.0).set_fs_monitor(2048.0).set_simulation_length(300.0)
                    sim_builder.model_config.tau0 = 30.0
                    sim_builder.model_config.tau1 = 0.5
                    sim_settings = sim_builder.build_sim_settings()
                    sim_settings.noise_intensity = np.array([0.0, 1e-5])
                elif isequal_string(sim_type, "reduced"):
                    sim_builder = \
                        SimulatorBuilder(model_configuration).set_model("EpileptorDP2D").set_fs(
                            4096.0).set_simulation_length(1000.0)
                    sim_settings = sim_builder.build_sim_settings()
                elif isequal_string(sim_type, "paper"):
                    sim_builder = SimulatorBuilder(
                        model_configuration).set_model("Epileptor")
                    sim_settings = sim_builder.build_sim_settings()
                else:
                    sim_builder = SimulatorBuilder(
                        model_configuration).set_model("EpileptorDP")
                    sim_settings = sim_builder.build_sim_settings()

                # Integrator and initial conditions initialization.
                # By default initial condition is set right on the equilibrium point.
                sim, sim_settings = \
                    sim_builder.build_simulator_TVB_from_model_sim_settings(head.connectivity, sim_settings)
                sim_path = os.path.join(
                    config.out.FOLDER_RES,
                    lsa_hypothesis.name + "_" + sim_type + "_sim_settings.h5")
                model_path = os.path.join(
                    config.out.FOLDER_RES,
                    lsa_hypothesis.name + sim_type + "_model.h5")
                writer.write_simulation_settings(sim.settings, sim_path)
                writer.write_simulator_model(
                    sim.model, model_path, sim.connectivity.number_of_regions)
                if test_write_read:
                    # TODO: find out why it cannot set monitor expressions
                    logger.info(
                        "Written and read simulation settings are identical?: "
                        + str(
                            assert_equal_objects(
                                sim.settings,
                                reader.read_simulation_settings(sim_path),
                                logger=logger)))
                    # logger.info("Written and read simulation model are identical?: " +
                    #             str(assert_equal_objects(sim.model,
                    #                                      reader.read_epileptor_model(model_path), logger=logger)))

                logger.info("\n\nSimulating %s..." % sim_type)
                sim_output, status = sim.launch_simulation(
                    report_every_n_monitor_steps=100, timeseries=Timeseries)
                if not status:
                    logger.warning("\nSimulation failed!")
                else:
                    time = np.array(sim_output.time).astype("f")
                    logger.info("\n\nSimulated signal return shape: %s",
                                sim_output.shape)
                    logger.info("Time: %s - %s", time[0], time[-1])
                    logger.info("Values: %s - %s", sim_output.data.min(),
                                sim_output.data.max())
                    if not status:
                        logger.warning("\nSimulation failed!")
                    else:
                        sim_output, seeg = compute_seeg_and_write_ts_to_h5(
                            sim_output,
                            sim.model,
                            head.sensorsSEEG,
                            os.path.join(config.out.FOLDER_RES,
                                         sim_type + "_ts.h5"),
                            seeg_gain_mode="lin",
                            hpf_flag=True,
                            hpf_low=10.0,
                            hpf_high=512.0)

                        # Plot results
                        plotter.plot_simulated_timeseries(
                            sim_output,
                            sim.model,
                            lsa_hypothesis.lsa_propagation_indices,
                            seeg_dict=seeg,
                            spectral_raster_plot=False,
                            title_prefix=hyp.name,
                            spectral_options={"log_scale": True})
def from_model_configuration_to_simulation(model_configuration, head, lsa_hypothesis, rescale_x1eq=None,
                                           sim_type="realistic", ts_file=None, seeg_gain_mode="lin", hpf_flag=False,
                                           hpf_low=10.0, hpf_high=512.0, config=Config(), plotter=False,
                                           title_prefix=""):
    # Choose model
    # Available models beyond the TVB Epileptor (they all encompass optional variations from the different papers):
    # EpileptorDP: similar to the TVB Epileptor + optional variations,
    # EpileptorDP2D: reduced 2D model, following Proix et all 2014 +optional variations,
    # EpleptorDPrealistic: starting from the TVB Epileptor + optional variations, but:
    #      -x0, Iext1, Iext2, slope and K become noisy state variables,
    #      -Iext2 and slope are coupled to z, g, or z*g in order for spikes to appear before seizure,
    #      -multiplicative correlated noise is also used
    # Optional variations:

    if rescale_x1eq is not None:
        model_config = deepcopy(model_configuration)
        x1eq_min = np.min(model_config.x1eq)
        model_config.x1eq = interval_scaling(model_config.x1eq, min_targ=x1eq_min, max_targ=rescale_x1eq,
                                              min_orig=x1eq_min, max_orig=np.max(model_config.x1eq))
        zeq = calc_eq_z(model_config.x1eq, model_config.yc, model_config.Iext1, "2d",
                        np.zeros(model_config.zeq.shape), model_config.slope, model_config.a,
                                 model_config.b, model_config.d)
        model_config.x0 = calc_x0(model_config.x1eq, zeq, model_config.K, model_config.connectivity,
                                  model_config.zmode, z_pos=True, shape=zeq.shape, calc_mode="non_symbol")
    else:
        model_config = model_configuration

    # ------------------------------Simulation--------------------------------------
    hypname = lsa_hypothesis.name.replace("_LSA", "")
    logger.info("\n\nConfiguring simulation...")
    if isequal_string(sim_type, "realistic"):
        sim, sim_settings= build_simulator_TVB_realistic(model_config, head.connectivity)
    elif isequal_string(sim_type, "fitting"):
        sim, sim_settings = build_simulator_TVB_fitting(model_config, head.connectivity)
    elif isequal_string(sim_type, "paper"):
        sim, sim_settings = build_simulator_TVB_paper(model_config, head.connectivity)
    else:
        sim, sim_settings = build_simulator_TVB_default(model_config, head.connectivity)
    dynamical_model = sim.model
    writer = H5Writer()
    if config.out.FOLDER_RES.find(hypname) >= 0:
        model_path = os.path.join(config.out.FOLDER_RES, dynamical_model._ui_name + "_model.h5")
        title_prefix += ""
    else:
        model_path = os.path.join(config.out.FOLDER_RES, hypname + dynamical_model._ui_name + "_model.h5")
        title_prefix += hypname
    writer.write_simulator_model(sim.model, model_path, sim.connectivity.number_of_regions)

    seeg=[]
    if ts_file is not None and os.path.isfile(ts_file):
        logger.info("\n\nLoading previously simulated time series from file: " + ts_file)
        sim_output = H5Reader().read_timeseries(ts_file)
        seeg = TimeseriesService().compute_seeg(sim_output.get_source(), head.sensorsSEEG, sum_mode=seeg_gain_mode)
    else:
        logger.info("\n\nSimulating %s..." % sim_type)
        sim_output, status = sim.launch_simulation(report_every_n_monitor_steps=100, timeseries=Timeseries)
        if not status:
            logger.warning("\nSimulation failed!")
        else:
            time = np.array(sim_output.time).astype("f")
            logger.info("\n\nSimulated signal return shape: %s", sim_output.shape)
            logger.info("Time: %s - %s", time[0], time[-1])
            sim_output, seeg = compute_seeg_and_write_ts_to_h5(sim_output, sim.model, head.sensorsSEEG,
                                                               ts_file, seeg_gain_mode=seeg_gain_mode,
                                                               hpf_flag=hpf_flag, hpf_low=hpf_low, hpf_high=hpf_high)

    if plotter:
        if not isinstance(plotter, Plotter):
            plotter = Plotter(config)
        # Plot results
        plotter.plot_simulated_timeseries(sim_output, sim.model, lsa_hypothesis.all_disease_indices, seeg_dict=seeg,
                                          spectral_raster_plot=False, title_prefix=title_prefix,
                                          spectral_options={"log_scale": True})

    return {"source": sim_output, "seeg": seeg}, sim
def main_fit_sim_hyplsa(stan_model_name,
                        empirical_files,
                        times_on,
                        time_length,
                        sim_times_on_off,
                        sensors_lbls,
                        normal_flag=False,
                        sim_source_type="fitting",
                        observation_model=OBSERVATION_MODELS.SEEG_POWER.value,
                        downsampling=2,
                        normalization="baseline-maxstd",
                        fitmethod="sample",
                        pse_flag=True,
                        fit_flag=True,
                        test_flag=False,
                        config=Config(),
                        **kwargs):

    # Prepare necessary services:
    logger = initialize_logger(__name__, config.out.FOLDER_LOGS)
    reader = H5Reader()
    writer = H5Writer()
    plotter = Plotter(config)

    # Read head
    logger.info("Reading from: " + config.input.HEAD)
    head = reader.read_head(config.input.HEAD)
    sensors = ensure_list(head.get_sensors_by_name("distance"))[0]
    if isinstance(sensors, dict):
        sensors = sensors.values()[0]
        sensor_id = head.sensors_name_to_id(sensors.name)
    elif sensors is None:
        sensors = head.get_sensors_by_index()
        sensor_id = 0
    plotter.plot_head(head)

    # Set hypothesis:
    hyp = set_hypotheses(head, config)[0]

    config.out._out_base = os.path.join(config.out._out_base, hyp.name)
    plotter = Plotter(config)

    # Set model configuration and compute LSA
    model_configuration, lsa_hypothesis, pse_results = \
        set_model_config_LSA(head, hyp, reader, config, K_unscaled=3 * K_UNSCALED_DEF, tau1=TAU1_DEF, tau0=TAU0_DEF,
                             pse_flag=pse_flag, plotter=plotter, writer=writer)

    base_path = os.path.join(config.out.FOLDER_RES)

    # -----------Get prototypical simulated data from the fitting version of Epileptor(simulate if necessary) ----------
    source2D_file = path("Source2Dts", base_path)
    source2D_ts = get_2D_simulation(model_configuration,
                                    head,
                                    lsa_hypothesis,
                                    source2D_file,
                                    sim_times_on_off,
                                    config=config,
                                    reader=reader,
                                    writer=writer,
                                    plotter=plotter)

    # -------------------------- Get model_data and observation signals: -------------------------------------------

    target_data_file = path("FitTargetData", base_path)
    sim_target_file = path("ts_fit", base_path)
    empirical_target_file = path("ts_empirical", base_path)
    problstc_model_file = path("ProblstcModel", base_path)
    model_data_file = path("ModelData", base_path)

    if os.path.isfile(problstc_model_file) and os.path.isfile(
            model_data_file) and os.path.isfile(target_data_file):
        # Read existing probabilistic model and model data...
        probabilistic_model = reader.read_probabilistic_model(
            problstc_model_file)
        model_data = reader.read_dictionary(model_data_file)
        target_data = reader.read_timeseries(target_data_file)
    else:
        # Create model inversion service (stateless)
        model_inversion = SDEModelInversionService()
        model_inversion.normalization = normalization
        # Exclude ctx-l/rh-unknown regions from fitting
        model_inversion.active_regions_exlude = find_labels_inds(
            head.connectivity.region_labels, ["unknown"])

        # Generate probabilistic model and model data
        probabilistic_model = \
            SDEProbabilisticModelBuilder(model_name=stan_model_name, model_config=model_configuration,
                                         xmode=XModes.X1EQMODE.value, priors_mode=PriorsModes.NONINFORMATIVE.value,
                                         sde_mode=SDE_MODES.NONCENTERED.value, observation_model=observation_model,
                                         normal_flag=normal_flag,  K=np.mean(model_configuration.K),
                                         sigma=SIGMA_DEF).generate_model(generate_parameters=False)

        # Get by simulation and/or loading prototypical source 2D timeseries and the target (simulater or empirical)
        # time series for fitting
        signals, probabilistic_model, simulator = \
           get_target_timeseries(probabilistic_model, head, lsa_hypothesis, times_on, time_length,
                                 sensors_lbls, sensor_id, observation_model, sim_target_file,
                                 empirical_target_file, sim_source_type, downsampling, empirical_files, config, plotter)

        # Update active model's active region nodes
        e_values = pse_results.get("e_values_mean",
                                   model_configuration.e_values)
        lsa_propagation_strength = pse_results.get(
            "lsa_propagation_strengths_mean",
            lsa_hypothesis.lsa_propagation_strengths)
        model_inversion.active_e_th = 0.05
        probabilistic_model = \
            model_inversion.update_active_regions(probabilistic_model, sensors=sensors, e_values=e_values,
                                                  lsa_propagation_strengths=lsa_propagation_strength, reset=True)

        # Select and set the target time series
        target_data, probabilistic_model, model_inversion = \
            set_target_timeseries(probabilistic_model, model_inversion, signals, sensors, head,
                                  target_data_file, writer, plotter)

        #---------------------------------Finally set priors for the parameters-------------------------------------
        probabilistic_model = \
                set_prior_parameters(probabilistic_model, target_data, source2D_ts, None, problstc_model_file,
                                     [XModes.X0MODE.value, "x1_init", "z_init", "tau1",  # "tau0", "K", "x1",
                                      "sigma", "dWt", "epsilon", "scale", "offset"], normal_flag,
                                     writer=writer, plotter=plotter)

        # Construct the stan model data dict:
        model_data = build_stan_model_data_dict(
            probabilistic_model,
            target_data.squeezed,
            model_configuration.connectivity,
            time=target_data.time)

        # # ...or interface with INS stan models
        # from tvb_fit.service.model_inversion.vep_stan_dict_builder import \
        #   build_stan_model_data_dict_to_interface_ins
        # model_data = build_stan_model_data_dict_to_interface_ins(probabilistic_model, target_data.squeezed,
        #                                                          model_configuration.connectivity, gain_matrix,
        #                                                          time=target_data.time)
        writer.write_dictionary(model_data, model_data_file)

    # -------------------------- Fit or load results from previous fitting: -------------------------------------------

    estimates, samples, summary, info_crit = \
        run_fitting(probabilistic_model, stan_model_name, model_data, target_data, config, head,
                    hyp.all_disease_indices, ["tau1", "sigma", "epsilon", "scale", "offset"], ["x0", "PZ", "x1eq", "zeq"],
                    fit_flag, test_flag, base_path, fitmethod, n_chains_or_runs=2,
                    output_samples=200, num_warmup=100, min_samples_per_chain=200, max_depth=15, delta=0.95,
                    iter=500000, tol_rel_obj=1e-6, debug=1, simulate=0, writer=writer, plotter=plotter, **kwargs)

    # -------------------------- Reconfigure model after fitting:---------------------------------------------------
    model_configuration_fit = reconfigure_model_with_fit_estimates(
        head, model_configuration, probabilistic_model, estimates, base_path,
        writer, plotter)

    logger.info("Done!")
 def build_hypothesis_from_file(self, hyp_file, e_indices=None):
     self.set_diseased_regions_values(H5Reader().read_epileptogenicity(
         self.config.input.HEAD, name=hyp_file))
     if e_indices:
         self.set_e_indices(e_indices)
     return self.build_hypothesis()
class TestCustomH5Reader(BaseTest):
    reader = H5Reader()
    writer = H5Writer()
    in_head = InputConfig().HEAD
    not_existent_file = "NotExistent.h5"

    def test_read_hypothesis(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestHypothesis.h5")
        hypothesis_builder = HypothesisBuilder(3, self.config)
        dummy_hypothesis = hypothesis_builder.set_e_hypothesis(
            [0], [0.6]).build_hypothesis()

        self.writer.write_hypothesis(dummy_hypothesis, test_file)
        hypothesis = self.reader.read_hypothesis(test_file)

        assert dummy_hypothesis.number_of_regions == hypothesis.number_of_regions
        assert numpy.array_equal(dummy_hypothesis.x0_values,
                                 hypothesis.x0_values)
        assert dummy_hypothesis.x0_indices == hypothesis.x0_indices
        assert numpy.array_equal(dummy_hypothesis.e_values,
                                 hypothesis.e_values)
        assert dummy_hypothesis.e_indices == hypothesis.e_indices
        assert numpy.array_equal(dummy_hypothesis.w_values,
                                 hypothesis.w_values)
        assert dummy_hypothesis.w_indices == hypothesis.w_indices
        assert numpy.array_equal(dummy_hypothesis.lsa_propagation_indices,
                                 hypothesis.lsa_propagation_indices)
        if len(dummy_hypothesis.lsa_propagation_indices) == 0:
            assert numpy.array_equal([0, 0, 0],
                                     hypothesis.lsa_propagation_strengths)
        else:
            assert numpy.array_equal(
                dummy_hypothesis.lsa_propagation_strengths,
                hypothesis.lsa_propagation_strengths)

    def test_read_model_configuration(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestModelConfiguration.h5")
        dummy_mc = ModelConfiguration(x1eq=numpy.array([2.0, 3.0, 1.0]),
                                      zmode=None,
                                      zeq=numpy.array([3.0, 2.0, 1.0]),
                                      connectivity=numpy.array(
                                          [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0],
                                           [2.0, 2.0, 2.0]]),
                                      Ceq=numpy.array([1.0, 2.0, 3.0]))
        self.writer.write_model_configuration(dummy_mc, test_file)
        mc = self.reader.read_model_configuration(test_file)

        assert numpy.array_equal(dummy_mc.x1eq, mc.x1eq)
        assert numpy.array_equal(dummy_mc.zeq, mc.zeq)
        assert numpy.array_equal(dummy_mc.Ceq, mc.Ceq)
        assert numpy.array_equal(dummy_mc.connectivity, mc.connectivity)

    def test_read_model_configuration_builder(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestModelConfigService.h5")
        dummy_mc_service = ModelConfigurationBuilder("Epileptor",
                                                     connectivity=numpy.array(
                                                         [[1.0, 2.0, 3.0],
                                                          [1.0, 2.0, 3.0],
                                                          [2.0, 2.0, 2.0]]))
        self.writer.write_model_configuration_builder(dummy_mc_service,
                                                      test_file)

        mc_service = self.reader.read_model_configuration_builder(test_file)

        assert dummy_mc_service.number_of_regions == mc_service.number_of_regions
        assert numpy.array_equal(dummy_mc_service.x0_values,
                                 mc_service.x0_values)
        assert numpy.array_equal(dummy_mc_service.K_unscaled,
                                 mc_service.K_unscaled)
        assert numpy.array_equal(dummy_mc_service.e_values,
                                 mc_service.e_values)
        assert numpy.array_equal(dummy_mc_service.yc, mc_service.yc)
        assert numpy.array_equal(dummy_mc_service.Iext1, mc_service.Iext1)
        assert numpy.array_equal(dummy_mc_service.Iext2, mc_service.Iext2)
        assert numpy.array_equal(dummy_mc_service.a, mc_service.a)
        assert numpy.array_equal(dummy_mc_service.b, mc_service.b)
        assert numpy.array_equal(dummy_mc_service.d, mc_service.d)
        assert numpy.array_equal(dummy_mc_service.slope, mc_service.slope)
        assert numpy.array_equal(dummy_mc_service.s, mc_service.s)
        assert numpy.array_equal(dummy_mc_service.gamma, mc_service.gamma)
        assert numpy.array_equal(dummy_mc_service.tau1, mc_service.tau1)
        assert numpy.array_equal(dummy_mc_service.tau0, mc_service.tau0)
        assert numpy.array_equal(dummy_mc_service.zmode, mc_service.zmode)
        assert dummy_mc_service.x1eq_mode == mc_service.x1eq_mode
        assert dummy_mc_service.K.all() == mc_service.K.all()
        assert numpy.array_equal(dummy_mc_service.x0cr, mc_service.x0cr)
        assert numpy.array_equal(dummy_mc_service.rx0, mc_service.rx0)

    def test_read_lsa_service(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestLSAService.h5")
        dummy_lsa_service = LSAService()
        self.writer.write_lsa_service(dummy_lsa_service, test_file)

        lsa_service = self.reader.read_lsa_service(test_file)

        assert dummy_lsa_service.eigen_vectors_number_selection == lsa_service.eigen_vectors_number_selection
        assert dummy_lsa_service.eigen_vectors_number == lsa_service.eigen_vectors_number
        assert dummy_lsa_service.eigen_values.size == lsa_service.eigen_values.size
        assert dummy_lsa_service.eigen_vectors.size == lsa_service.eigen_vectors.size
        assert dummy_lsa_service.weighted_eigenvector_sum == lsa_service.weighted_eigenvector_sum
        assert dummy_lsa_service.normalize_propagation_strength == lsa_service.normalize_propagation_strength