def snap(self):
     """Snaps the sides of the square such that each corner (x,y) is modified to be a corner (x',y') where x' is the
             integer value closest to x and y' is the integer value closest to y. This, of course, may change the shape to a
             general quadrilateral, hence the return type. The only exception is when the square is positioned in a way where
             this approximation will lead it to vanish into a single point. In that case, a call to snap() will not modify
             this square in any way."""
     newPoint1 = TwoDPoint(Square.regular_round(self.vertices[0].x),
                           Square.regular_round(self.vertices[0].y))
     newPoint2 = TwoDPoint(Square.regular_round(self.vertices[1].x),
                           Square.regular_round(self.vertices[1].y))
     newPoint3 = TwoDPoint(Square.regular_round(self.vertices[2].x),
                           Square.regular_round(self.vertices[2].y))
     newPoint4 = TwoDPoint(Square.regular_round(self.vertices[3].x),
                           Square.regular_round(self.vertices[3].y))
     if (newPoint1 == newPoint2 or newPoint1 == newPoint3
             or newPoint1 == newPoint4 or newPoint2 == newPoint3
             or newPoint2 == newPoint4 or newPoint3 == newPoint4):
         return self
     return Quadrilateral(Square.regular_round(self.vertices[0].x),
                          Square.regular_round(self.vertices[0].y),
                          Square.regular_round(self.vertices[1].x),
                          Square.regular_round(self.vertices[1].y),
                          Square.regular_round(self.vertices[2].x),
                          Square.regular_round(self.vertices[2].y),
                          Square.regular_round(self.vertices[3].x),
                          Square.regular_round(self.vertices[3].y))  # TODO
Esempio n. 2
0
 def setUp(self) -> None:
     self.point1 = TwoDPoint(0, 0)
     self.point2 = TwoDPoint(1, 2)
     self.point3 = TwoDPoint(5, 0)
     self.point4 = TwoDPoint(0, 0)
     self.coordinates_even = [1, -2.8, 3, 4.6]
     self.coordinates_odd = [-1, 2, -3.7, 4, 5]
Esempio n. 3
0
 def test_from_coordinates_decimal_even(self):
     # Even values (decimal)
     self.assertEqual(
         [TwoDPoint(1.4, 1.9),
          TwoDPoint(0.5, -0.5),
          TwoDPoint(3.0, -1)],
         TwoDPoint.from_coordinates([1.4, 1.9, 0.5, -0.5, 3.0, -1]))
Esempio n. 4
0
 def test_from_coordinates(self):
     a = TwoDPoint(1, 2)
     b = TwoDPoint(1, 3)
     c = TwoDPoint(0, -1)
     d = TwoDPoint(5, 6.5)
     l = [a, b, c, d]
     l2 = [1, 2, 1, 3, 0, -1, 5, 6.5]
     self.assertEqual(l, TwoDPoint.from_coordinates(l2))
 def test_from_coordinates(self):
     list_of_points = [
         TwoDPoint(0, 4),
         TwoDPoint(6, 4),
         TwoDPoint(6, 0),
         TwoDPoint(0, 0)
     ]
     self.assertEqual(TwoDPoint.from_coordinates([0, 4, 6, 4, 6, 0, 0, 0]),
                      list_of_points)  # TODO
Esempio n. 6
0
 def test_center(self):
     r1 = Rectangle(2, 1, 0, 1, 0, 0, 2, 0)
     self.assertEqual(str(r1.center()), str(TwoDPoint(1.0, 0.5)))
     with self.assertRaises(TypeError) as error:
         r2 = Rectangle(2, 4, -2, 4, -5, 0, 5, 0)  # Trapezoid
     r3 = Rectangle(1, 1, 0, 1, 0, 0, 1, 0)  # Square
     self.assertEqual(str(r3.center()), str(TwoDPoint(0.5, 0.5)))
     with self.assertRaises(TypeError) as error:
         r4 = Rectangle(1, 1, 0, 1, 0, 0, 1, 0, 5, 6)  # Too many arguments
Esempio n. 7
0
 def test_center(self):
     print("Testing center method")
     A = Rectangle(0, 0, -3.5, 0.0, -3.5, -7.8, 0, -7.8)
     B = Rectangle(0, 0.0, -5, 0.0, -5, -5, 0, -5)
     aCenter = TwoDPoint(-1.75, -3.9)
     bCenter = TwoDPoint(-2.5, -2.5)
     self.assertEqual(aCenter, A.center())
     self.assertEqual(bCenter, B.center())
     self.assertNotEqual(A.center(),TwoDPoint(0,0))
     print("Done testing center method successfully")
class TestTwoDPoint(TestCase):
    def setUp(self) -> None:
        self.p1 = TwoDPoint(1, 2)
        self.p2 = TwoDPoint(1, 2)
        self.p3 = TwoDPoint(3, 2)

    def test_from_coordinates(self):
        list_of_points = [
            TwoDPoint(0, 4),
            TwoDPoint(6, 4),
            TwoDPoint(6, 0),
            TwoDPoint(0, 0)
        ]
        self.assertEqual(TwoDPoint.from_coordinates([0, 4, 6, 4, 6, 0, 0, 0]),
                         list_of_points)  # TODO

    def test_eq(self):
        self.assertTrue(self.p1.__eq__(self.p2))
        self.assertFalse(self.p1.__eq__(self.p3))
        self.assertFalse(self.p3.__eq__(self.p2))

    def test_ne(self):
        self.assertTrue(self.p1.__ne__(self.p3))
        self.assertTrue(self.p2.__ne__(self.p3))
        self.assertFalse(self.p1.__ne__(self.p2))

    def test_str(self):
        self.assertEqual(self.p1.__str__(), "(1, 2)")

    def test_add(self):
        self.assertEqual(self.p1.__add__(self.p3), TwoDPoint(4, 4))

    def test_sub(self):
        self.assertEqual(self.p3.__sub__(self.p1), TwoDPoint(2, 0))
Esempio n. 9
0
 def __init__(self, *floats):
     if isinstance(floats[0], list):
         points = TwoDPoint.from_coordinates(floats[0])
     else:
         points = TwoDPoint.from_coordinates(list(floats))
     if len(points) != 4:
         raise TypeError("Too many or too few points")
     self.__vertices = tuple(points[0:4])
     if not self.__is_member():
         raise TypeError(
             "A quadrilateral cannot be formed from given coordinates")
Esempio n. 10
0
    def center(self):
        """Returns the center of this rectangle, calculated to be the point of intersection of its diagonals."""
        v = self.vertices
        x, y = 0, 0

        for pt in v:
            x += pt.x
            y += pt.y
        if TwoDPoint.midpoint(v[0], v[2]) == TwoDPoint.midpoint(v[1], v[3]):
            return TwoDPoint.midpoint(v[0], v[2])
        else:
            return TwoDPoint(x/4, y/4)
Esempio n. 11
0
 def __init__(self, *floats):
     points = TwoDPoint.from_coordinates(list(floats))
     if len(points) < 4:
         raise Exception
     self.__vertices = tuple(points[0:4])
     if not self.__is_member():
         raise Exception
Esempio n. 12
0
    def center(self):
        newX = self.vertices[0].x + self.vertices[1].x + self.vertices[
            2].x + self.vertices[3].x
        newY = self.vertices[0].y + self.vertices[1].y + self.vertices[
            2].y + self.vertices[3].y

        return TwoDPoint(newX / 4.0, newY / 4.0)  # TODO
Esempio n. 13
0
 def test__is_member(self):
     print("Testing is_member method")
     B = Rectangle(4, 2, -4, 2, -4, 0, 4, 0)
     self.assertTrue((B._Rectangle__is_member()))
     B._Quadrilateral__vertices = (TwoDPoint(0,0),TwoDPoint(0,0),TwoDPoint(0,0),TwoDPoint(0,0))
     self.assertFalse((B._Rectangle__is_member()))
     B._Quadrilateral__vertices = (TwoDPoint(0,0),TwoDPoint(-3.5,0),TwoDPoint(-3.5,-7.8),TwoDPoint(0,-7.8))
     self.assertTrue((B._Rectangle__is_member()))
     print("Done testing is_member method successfully")
Esempio n. 14
0
 def snap(self) -> 'TwoDPoint':
     """Snaps the sides of the square such that each corner (x,y) is modified to be a corner (x',y') where x' is the
     integer value closest to x and y' is the integer value closest to y. This, of course, may change the shape to a
     general quadrilateral, hence the return type. The only exception is when the square is positioned in a way where
     this approximation will lead it to vanish into a single point. In that case, a call to snap() will not modify
     this square in any way."""
     vertices = self.vertices
     point0 = TwoDPoint(int(round(vertices[0].x)),
                        int(round(vertices[0].y)))
     point1 = TwoDPoint(int(round(vertices[1].x)),
                        int(round(vertices[1].y)))
     if point0 == point1:
         return self
     return Quadrilateral(int(round(vertices[0].x)),
                          int(round(vertices[0].y)),
                          int(round(vertices[1].x)),
                          int(round(vertices[1].y)),
                          int(round(vertices[2].x)),
                          int(round(vertices[2].y)),
                          int(round(vertices[3].x)),
                          int(round(vertices[3].y)))  # TODO
Esempio n. 15
0
 def test_from_coordinates(self):
     print("Testing _from_coordinates method")
     c = TwoDPoint.from_coordinates([0, 0, -3.5, 0.0])
     d = [TwoDPoint(0, 0), TwoDPoint(-3.5, 0.0)]
     e = [TwoDPoint(0, 0), TwoDPoint(-3.5, 3.5)]
     self.assertEqual(c, d)
     self.assertNotEqual(d, e)
     with self.assertRaises(Exception) as assertStatement:
         TwoDPoint.from_coordinates([1, 1, 1])
     self.assertEqual(
         "Odd number of floats given to build a list of 2-d points",
         str(assertStatement.exception))
     print("Done testing _from_coordinates successfully")
Esempio n. 16
0
 def test___ne__(self):
     print("Testing __ne__ method")
     twoD1 = TwoDPoint(0, 0)
     twoD2 = TwoDPoint(0, 0)
     twoD3 = TwoDPoint(1, 1)
     self.assertFalse(twoD1 != twoD2)
     self.assertTrue(twoD1 != twoD3)
     self.assertFalse(twoD1.__ne__(twoD2))
     self.assertTrue(twoD1.__ne__(twoD3))
     print("Done testing __ne__ method successfully")
 def __init__(self, *floats):
     if not (len(list(floats)) == 8):
         raise TypeError(
             "A {} cannot be formed by the given coordinates.".format(
                 self.__class__.__name__))
     points = TwoDPoint.from_coordinates(list(floats))
     self.__vertices = tuple(points[0:4])
     if ((self.vertices[0] == self.vertices[1])
             or (self.vertices[0] == self.vertices[2])
             or (self.vertices[0] == self.vertices[3])
             or (self.vertices[1] == self.vertices[2])
             or (self.vertices[1] == self.vertices[3])
             or (self.vertices[2] == self.vertices[3])):
         raise TypeError(
             "A {} cannot be formed by the given coordinates.".format(
                 self.__class__.__name__))
Esempio n. 18
0
 def test_from_coordinates(
         self):  # Not sure if this is how it is supposed to be tested
     # TODO
     Expected = []
     Expected.append(TwoDPoint(1.0, 1.0))
     Expected.append(TwoDPoint(0.0, 1.0))
     Expected.append(TwoDPoint(0.0, 0.0))
     Expected.append(TwoDPoint(1.0, 0.0))
     lst = [1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0]
     self.assertEqual(Expected, TwoDPoint.from_coordinates(lst))
     Expected2 = []
     Expected2.append(TwoDPoint(1.0, 1.0))
     lst2 = [2.0, 2.0]
     self.assertFalse(Expected2 == TwoDPoint.from_coordinates(
         lst2))  # These are two points that are not equal to each other
Esempio n. 19
0
 def test__sub__(self):
     print("Testing __add__ method")
     twoD1 = TwoDPoint(1, 1)
     twoD2 = TwoDPoint(1, 0)
     twoD3 = TwoDPoint(0, 1)
     self.assertEqual(twoD1.__sub__(twoD2), twoD3)
     self.assertEqual(twoD1 - twoD2, twoD3)
     self.assertNotEqual(twoD1.__sub__(twoD3), twoD3)
     self.assertNotEqual(twoD1 - twoD1, twoD3)
     with self.assertRaises(ValueError) as assertStatement:
         twoD1 - "string"
     self.assertEqual("Subtraction is possibile only between TwoDPoint",
                      str(assertStatement.exception))
     print("Done testing __add__ method successfully")
 def test_sub(self):
     self.assertEqual(self.p3.__sub__(self.p1), TwoDPoint(2, 0))
 def test_add(self):
     self.assertEqual(self.p1.__add__(self.p3), TwoDPoint(4, 4))
 def center(self) -> 'TwoDPoint':
     """Returns the center of this rectangle, calculated to be the point of intersection of its diagonals."""
     return TwoDPoint((self.vertices[0].x + self.vertices[2].x) / 2,
                      (self.vertices[0].y + self.vertices[2].y) / 2)  # TODO
Esempio n. 23
0
 def test_str(self):
     self.assertEqual('(%g, %g)' % (1, 1),
                      TwoDPoint.__str__(TwoDPoint(1, 1)))
Esempio n. 24
0
 def test_sub_false(self):
     self.assertFalse(
         TwoDPoint(9, 2) == (TwoDPoint(3, 7) - TwoDPoint(3, 5)))
Esempio n. 25
0
 def __init__(self, *floats):
     points = TwoDPoint.from_coordinates(list(floats))
     self.__vertices = tuple(points[0:4])
 def setUp(self) -> None:
     self.p1 = TwoDPoint(1, 2)
     self.p2 = TwoDPoint(1, 2)
     self.p3 = TwoDPoint(3, 2)
Esempio n. 27
0
 def __init__(self, *floats):
     points = TwoDPoint.from_coordinates(list(floats))
     self.__vertices = tuple(points[0:4])
     if not self.__is_member():
         raise TypeError("A Quadrilateral cannot be formed by the given coordinates.")
Esempio n. 28
0
 def test_from_coordinates_odd(self):
     # Odd values
     with self.assertRaises(Exception):
         TwoDPoint.from_coordinates([1, 1, 0, 0, 3])
Esempio n. 29
0
 def center(self) -> TwoDPoint:
     """Returns the center of this rectangle, calculated to be the point of intersection of its diagonals."""
     val = self.vertices
     return TwoDPoint(((val[0].x + val[2].x) / 2),
                      ((val[0].x + val[2].x) / 2))
Esempio n. 30
0
 def test_sub_true(self):
     self.assertTrue(TwoDPoint(5, 2) == (TwoDPoint(8, 7) - TwoDPoint(3, 5)))