def purge_instance(instance_id, nb_to_keep): instance = models.Instance.query.get(instance_id) logger = get_instance_logger(instance) logger.info('purge of backup directories for %s', instance.name) instance_config = load_instance_config(instance.name) backups = set(glob.glob('{}/*'.format(instance_config.backup_directory))) logger.info('backups are: %s', backups) # we add the realpath not to have problems with double / or stuff like that loaded = set( os.path.realpath(os.path.dirname(dataset.name)) for dataset in instance.last_datasets(nb_to_keep) ) logger.info('loaded data are: %s', loaded) running = set(os.path.realpath(os.path.dirname(dataset.name)) for dataset in instance.running_datasets()) logger.info('running bina are: %s', running) to_remove = [os.path.join(instance_config.backup_directory, f) for f in backups - loaded - running] missing = [l for l in loaded if l not in backups] if missing: logger.error( "MISSING backup files! impossible to find %s in the backup dir, " "we skip the purge, repair ASAP to fix the purge", missing, ) return logger.info('we remove: %s', to_remove) for path in to_remove: shutil.rmtree(path)
def heartbeat(): """ send a heartbeat to all kraken """ logging.info('ping krakens!!') with kombu.Connection( current_app.config['CELERY_BROKER_URL']) as connection: instances = models.Instance.query_existing().all() task = task_pb2.Task() task.action = task_pb2.HEARTBEAT for instance in instances: try: config = load_instance_config(instance.name) exchange = kombu.Exchange(config.exchange, 'topic', durable=True) producer = connection.Producer(exchange=exchange) producer.publish(task.SerializeToString(), routing_key='{}.task.heartbeat'.format( instance.name)) except Exception as e: logging.error( "Could not ping krakens for instance {i}: {e}".format( i=instance, e=e))
def run(self, name_=""): if name_: instances = models.Instance.query.filter_by(name=name_).all() else: instances = models.Instance.query.all() if not instances: logging.getLogger(__name__).\ error("Unable to find any instance for name '{name}'" .format(name=name_)) return #TODO: create a real job job_id = 1 instances_name = [instance.name for instance in instances] for instance_name in instances_name: instance_config = None try: instance_config = load_instance_config(instance_name) except ValueError: logging.getLogger(__name__).\ info("Unable to find instance " + instance_name) continue aggregate_places(instance_config, job_id) job_id += 1
def update_data(): for instance in models.Instance.query_existing().all(): current_app.logger.debug("Update data of : {}".format(instance.name)) instance_config = load_instance_config(instance.name) files = glob.glob(instance_config.source_directory + "/*") if files: import_data(files, instance, backup_file=True)
def build_data(instance): job = models.Job() job.instance = instance job.state = 'pending' instance_config = load_instance_config(instance.name) models.db.session.add(job) models.db.session.commit() chain(ed2nav.si(instance_config, job.id, None), finish_job.si(job.id)).delay() current_app.logger.info("Job build data of : %s queued"%instance.name)
def reload_kraken(instance_id): instance = models.Instance.query.get(instance_id) job = models.Job() job.instance = instance job.state = 'pending' instance_config = load_instance_config(instance.name) models.db.session.add(job) models.db.session.commit() chain(reload_data.si(instance_config, job.id), finish_job.si(job.id)).delay() logging.info("Task reload kraken for instance {} queued".format(instance.name))
def reload_at(instance_id): instance = models.Instance.query.get(instance_id) job = models.Job() job.instance = instance job.state = 'pending' instance_config = load_instance_config(instance.name) models.db.session.add(job) models.db.session.commit() chain(nav2rt.si(instance_config, job.id), reload_data.si(instance_config, job.id), finish_job.si(job.id)).delay()
def scan_instances(): for instance_file in glob.glob(current_app.config['INSTANCES_DIR'] + '/*.ini'): instance_name = os.path.basename(instance_file).replace('.ini', '') instance = models.Instance.query.filter_by(name=instance_name).first() if not instance: current_app.logger.info('new instances detected: %s', instance_name) instance = models.Instance(name=instance_name) instance_config = load_instance_config(instance.name) instance.is_free = instance_config.is_free models.db.session.add(instance) models.db.session.commit()
def build_all_data(): for instance in models.Instance.query.all(): job = models.Job() job.instance = instance job.state = 'pending' instance_config = load_instance_config(instance.name) models.db.session.add(job) models.db.session.commit() chain(ed2nav.si(instance_config, job.id), nav2rt.si(instance_config, job.id)).delay() current_app.logger.info("Job build data of : %s queued" % instance.name)
def update_data(): for instance in models.Instance.query_existing().all(): current_app.logger.debug("Update data of : {}".format(instance.name)) instance_config = None try: instance_config = load_instance_config(instance.name) except: current_app.logger.exception("impossible to load instance configuration for %s", instance.name) # Do not stop the task if only one instance is missing continue files = glob.glob(instance_config.source_directory + "/*") if files: import_data(files, instance, backup_file=True)
def send_to_mimir(instance, filename): """ :param instance: instance to receive the data :param filename: file to inject towards mimir - create a job with a data_set - data injection towards mimir(stops2mimir, ntfs2mimir) returns action list """ # This test is to avoid creating a new job if there is no action on mimir. if not (instance.import_ntfs_in_mimir or instance.import_stops_in_mimir): return [] actions = [] job = models.Job() instance_config = load_instance_config(instance.name) job.instance = instance job.state = 'running' dataset = models.DataSet() dataset.family_type = 'mimir' dataset.type = 'fusio' # currently the name of a dataset is the path to it dataset.name = filename models.db.session.add(dataset) job.data_sets.append(dataset) models.db.session.add(job) models.db.session.commit() # Import ntfs in Mimir if instance.import_ntfs_in_mimir: actions.append( ntfs2mimir.si(instance_config, filename, job.id, dataset_uid=dataset.uid)) # Import stops in Mimir # if we are loading pt data we might want to load the stops to autocomplete if instance.import_stops_in_mimir and not instance.import_ntfs_in_mimir: actions.append( stops2mimir.si(instance_config, filename, job.id, dataset_uid=dataset.uid)) actions.append(finish_job.si(job.id)) return actions
def _init(self): instances = models.Instance.query.all() self.connection = kombu.Connection( current_app.config['CELERY_BROKER_URL']) for instance in instances: #initialize the last relaod at the minimum date possible self.last_reload[instance.id] = datetime(1, 1, 1) config = load_instance_config(instance.name) exchange = kombu.Exchange(config.exchange, 'topic', durable=True) for topic in config.rt_topics: self.topics_to_instances[topic].append(instance) queue = kombu.Queue(exchange=exchange, durable=True, routing_key=topic) self.queues.append(queue)
:param files: files to import :param instance: instance to receive the data :param backup_file: If True the files are moved to a backup directory, else they are not moved :param async: If True all jobs are run in background, else the jobs are run in sequence the function will only return when all of them are finish :param reload: If True kraken would be reload at the end of the treatment run the whole data import process: - data import in bdd (fusio2ed, gtfs2ed, poi2ed, ...) - export bdd to nav file - update the jormungandr db with the new data for the instance - reload the krakens """ actions = [] job = models.Job() instance_config = load_instance_config(instance.name) job.instance = instance job.state = 'pending' task = { 'gtfs': gtfs2ed, 'fusio': fusio2ed, 'osm': osm2ed, 'geopal': geopal2ed, 'fare': fare2ed, 'poi': poi2ed, 'synonym': synonym2ed, 'shape': shape2ed, } for _file in files: filename = None
def import_data( files, instance, backup_file, asynchronous=True, reload=True, custom_output_dir=None, skip_mimir=False ): """ import the data contains in the list of 'files' in the 'instance' :param files: files to import :param instance: instance to receive the data :param backup_file: If True the files are moved to a backup directory, else they are not moved :param asynchronous: If True all jobs are run in background, else the jobs are run in sequence the function will only return when all of them are finish :param reload: If True kraken would be reload at the end of the treatment :param custom_output_dir: subdirectory for the nav file created. If not given, the instance default one is taken :param skip_mimir: skip importing data into mimir run the whole data import process: - data import in bdd (fusio2ed, gtfs2ed, poi2ed, ...) - export bdd to nav file - update the jormungandr db with the new data for the instance - reload the krakens """ actions = [] job = models.Job() instance_config = load_instance_config(instance.name) job.instance = instance job.state = 'running' task = { 'gtfs': gtfs2ed, 'fusio': fusio2ed, 'osm': osm2ed, 'geopal': geopal2ed, 'fare': fare2ed, 'poi': poi2ed, 'synonym': synonym2ed, 'shape': shape2ed, } for _file in files: filename = None dataset = models.DataSet() # NOTE: for the moment we do not use the path to load the data here # but we'll need to refactor this to take it into account try: dataset.type, _ = utils.type_of_data(_file) dataset.family_type = utils.family_of_data(dataset.type) except Exception: if backup_file: move_to_backupdirectory(_file, instance_config.backup_directory) current_app.logger.debug( "Corrupted source file : {} moved to {}".format(_file, instance_config.backup_directory) ) continue if dataset.type in task: if backup_file: filename = move_to_backupdirectory(_file, instance_config.backup_directory) else: filename = _file actions.append(task[dataset.type].si(instance_config, filename, dataset_uid=dataset.uid)) else: # unknown type, we skip it current_app.logger.debug("unknown file type: {} for file {}".format(dataset.type, _file)) continue # currently the name of a dataset is the path to it dataset.name = filename models.db.session.add(dataset) job.data_sets.append(dataset) if actions: models.db.session.add(job) models.db.session.commit() # We pass the job id to each tasks, but job need to be commited for having an id for action in actions: action.kwargs['job_id'] = job.id # Create binary file (New .nav.lz4) binarisation = [ed2nav.si(instance_config, job.id, custom_output_dir)] actions.append(chain(*binarisation)) # Reload kraken with new data after binarisation (New .nav.lz4) if reload: actions.append(reload_data.si(instance_config, job.id)) if not skip_mimir: for dataset in job.data_sets: actions.extend(send_to_mimir(instance, dataset.name, dataset.family_type)) else: current_app.logger.info("skipping mimir import") actions.append(finish_job.si(job.id)) if asynchronous: return chain(*actions).delay() else: # all job are run in sequence and import_data will only return when all the jobs are finish return chain(*actions).apply()
def import_data( files, instance, backup_file, asynchronous=True, reload=True, custom_output_dir=None, skip_mimir=False, skip_2ed=False, ): """ import the data contains in the list of 'files' in the 'instance' :param files: files to import :param instance: instance to receive the data :param backup_file: If True the files are moved to a backup directory, else they are not moved :param asynchronous: If True all jobs are run in background, else the jobs are run in sequence the function will only return when all of them are finish :param reload: If True kraken would be reload at the end of the treatment :param custom_output_dir: subdirectory for the nav file created. If not given, the instance default one is taken :param skip_mimir: skip importing data into mimir :param skip_2ed: skip inserting last_load_dataset files into ed database run the whole data import process: - data import in bdd (fusio2ed, gtfs2ed, poi2ed, ...) - export bdd to nav file - update the jormungandr db with the new data for the instance - reload the krakens """ actions = [] job = models.Job() instance_config = load_instance_config(instance.name) job.instance = instance job.state = 'running' task = { 'gtfs': gtfs2ed, 'fusio': fusio2ed, 'osm': osm2ed, 'geopal': geopal2ed, 'fare': fare2ed, 'poi': poi2ed, 'synonym': synonym2ed, 'shape': shape2ed, } def process_ed2nav(): models.db.session.add(job) models.db.session.commit() # We pass the job id to each tasks, but job need to be commited for having an id for action in actions: action.kwargs['job_id'] = job.id # Create binary file (New .nav.lz4) binarisation = [ed2nav.si(instance_config, job.id, custom_output_dir)] actions.append(chain(*binarisation)) # Reload kraken with new data after binarisation (New .nav.lz4) if reload: actions.append(reload_data.si(instance_config, job.id)) if not skip_mimir: for dataset in job.data_sets: actions.extend( send_to_mimir(instance, dataset.name, dataset.family_type)) else: current_app.logger.info("skipping mimir import") actions.append(finish_job.si(job.id)) # We should delete old backup directories related to this instance actions.append( purge_instance.si( instance.id, current_app.config['DATASET_MAX_BACKUPS_TO_KEEP'])) if asynchronous: return chain(*actions).delay() else: # all job are run in sequence and import_data will only return when all the jobs are finish return chain(*actions).apply() if skip_2ed: # For skip_2ed, skip inserting last_load_dataset files into ed database return process_ed2nav() for _file in files: filename = None dataset = models.DataSet() # NOTE: for the moment we do not use the path to load the data here # but we'll need to refactor this to take it into account try: dataset.type, _ = utils.type_of_data(_file) dataset.family_type = utils.family_of_data(dataset.type) except Exception: if backup_file: move_to_backupdirectory(_file, instance_config.backup_directory) current_app.logger.debug( "Corrupted source file : {} moved to {}".format( _file, instance_config.backup_directory)) continue if dataset.type in task: if backup_file: filename = move_to_backupdirectory( _file, instance_config.backup_directory, manage_sp_char=True) else: filename = _file has_pt_planner_loki = ( hasattr(instance, 'pt_planners_configurations') and "loki" in instance.pt_planners_configurations) if has_pt_planner_loki: loki_data_source = instance.pt_planners_configurations.get( 'loki', {}).get('data_source') if loki_data_source is not None: if loki_data_source == "minio": if dataset.type == "fusio": actions.append( fusio2s3.si(instance_config, filename, dataset_uid=dataset.uid)) if dataset.type == "gtfs": actions.append( gtfs2s3.si(instance_config, filename, dataset_uid=dataset.uid)) elif loki_data_source == "local" and dataset.type in [ "fusio", "gtfs" ]: zip_file = zip_if_needed(filename) dest = os.path.join( os.path.dirname(instance_config.target_file), "ntfs.zip") shutil.copy(zip_file, dest) else: current_app.logger.debug( "unknown loki data_source '{}' for coverage '{}'". format(loki_data_source, instance.name)) actions.append(task[dataset.type].si(instance_config, filename, dataset_uid=dataset.uid)) else: # unknown type, we skip it current_app.logger.debug( "unknown file type: {} for file {}".format( dataset.type, _file)) continue # currently the name of a dataset is the path to it dataset.name = filename dataset.state = "pending" models.db.session.add(dataset) job.data_sets.append(dataset) if actions: return process_ed2nav()
def update_data(): for instance in models.Instance.query.all(): current_app.logger.debug("Update data of : %s" % instance.name) instance_config = load_instance_config(instance.name) files = glob.glob(instance_config.source_directory + "/*") actions = [] job = models.Job() job.instance = instance job.state = 'pending' for _file in files: dataset = models.DataSet() filename = None dataset.type = type_of_data(_file) if dataset.type == 'gtfs': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(gtfs2ed.si(instance_config, filename)) elif dataset.type == 'fusio': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(fusio2ed.si(instance_config, filename)) elif dataset.type == 'osm': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(osm2ed.si(instance_config, filename)) elif dataset.type == 'geopal': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(geopal2ed.si(instance_config, filename)) elif dataset.type == 'fare': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(fare2ed.si(instance_config, filename)) elif dataset.type == 'poi': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(poi2ed.si(instance_config, filename)) elif dataset.type == 'synonym': filename = move_to_backupdirectory( _file, instance_config.backup_directory) actions.append(synonym2ed.si(instance_config, filename)) else: #unknown type, we skip it continue #currently the name of a dataset is the path to it dataset.name = filename models.db.session.add(dataset) job.data_sets.append(dataset) if actions: models.db.session.add(job) models.db.session.commit() for action in actions: action.kwargs['job_id'] = job.id #We pass the job id to each tasks, but job need to be commited for #having an id binarisation = [ ed2nav.si(instance_config, job.id), nav2rt.si(instance_config, job.id) ] aggregate = aggregate_places.si(instance_config, job.id) #We pass the job id to each tasks, but job need to be commited for #having an id actions.append(group(chain(*binarisation), aggregate)) actions.append(reload_data.si(instance_config, job.id)) actions.append(finish_job.si(job.id)) chain(*actions).delay()
def bounding_shape(instance_name, shape_path): """ Set the bounding shape to a custom value """ instance_conf = load_instance_config(instance_name) load_bounding_shape(instance_name, instance_conf, shape_path)
def import_data(files, instance, backup_file): """ import the data contains in the list of 'files' in the 'instance' :param files: files to import :param instance: instance to receive the data :param backup_file: If True the files are moved to a backup directory, else they are not moved run the whole data import process: - data import in bdd (fusio2ed, gtfs2ed, poi2ed, ...) - export bdd to nav file - update the jormungandr db with the new data for the instance - reload the krakens """ actions = [] job = models.Job() instance_config = load_instance_config(instance.name) job.instance = instance job.state = 'pending' task = { 'gtfs': gtfs2ed, 'fusio': fusio2ed, 'osm': osm2ed, 'geopal': geopal2ed, 'fare': fare2ed, 'poi': poi2ed, 'synonym': synonym2ed, } for _file in files: filename = None dataset = models.DataSet() dataset.type = type_of_data(_file) if dataset.type in task: if backup_file: filename = move_to_backupdirectory( _file, instance_config.backup_directory) else: filename = _file actions.append(task[dataset.type].si(instance_config, filename)) else: #unknown type, we skip it current_app.logger.debug("unknwn file type: {} for file {}".format( dataset.type, _file)) continue #currently the name of a dataset is the path to it dataset.name = filename models.db.session.add(dataset) job.data_sets.append(dataset) if actions: models.db.session.add(job) models.db.session.commit() for action in actions: action.kwargs['job_id'] = job.id #We pass the job id to each tasks, but job need to be commited for #having an id binarisation = [ ed2nav.si(instance_config, job.id), nav2rt.si(instance_config, job.id) ] aggregate = aggregate_places.si(instance_config, job.id) #We pass the job id to each tasks, but job need to be commited for #having an id actions.append(group(chain(*binarisation), aggregate)) actions.append(reload_data.si(instance_config, job.id)) actions.append(finish_job.si(job.id)) chain(*actions).delay()