Esempio n. 1
0
class EventHubConsumer(object):
    """
    A consumer responsible for reading EventData from a specific Event Hub
     partition and as a member of a specific consumer group.

    A consumer may be exclusive, which asserts ownership over the partition for the consumer
     group to ensure that only one consumer from that group is reading the from the partition.
     These exclusive consumers are sometimes referred to as "Epoch Consumers."

    A consumer may also be non-exclusive, allowing multiple consumers from the same consumer
     group to be actively reading events from the partition.  These non-exclusive consumers are
     sometimes referred to as "Non-Epoch Consumers."

    """
    timeout = 0
    _epoch = b'com.microsoft:epoch'

    def __init__(self,
                 client,
                 source,
                 event_position=None,
                 prefetch=300,
                 owner_level=None,
                 keep_alive=None,
                 auto_reconnect=True):
        """
        Instantiate a consumer. EventHubConsumer should be instantiated by calling the `create_consumer` method
         in EventHubClient.

        :param client: The parent EventHubClient.
        :type client: ~azure.eventhub.client.EventHubClient
        :param source: The source EventHub from which to receive events.
        :type source: str
        :param prefetch: The number of events to prefetch from the service
         for processing. Default is 300.
        :type prefetch: int
        :param owner_level: The priority of the exclusive consumer. It will an exclusive
         consumer if owner_level is set.
        :type owner_level: int
        """
        self.running = False
        self.client = client
        self.source = source
        self.offset = event_position
        self.messages_iter = None
        self.prefetch = prefetch
        self.owner_level = owner_level
        self.keep_alive = keep_alive
        self.auto_reconnect = auto_reconnect
        self.retry_policy = errors.ErrorPolicy(
            max_retries=self.client.config.max_retries,
            on_error=_error_handler)
        self.reconnect_backoff = 1
        self.properties = None
        self.redirected = None
        self.error = None
        partition = self.source.split('/')[-1]
        self.name = "EHReceiver-{}-partition{}".format(uuid.uuid4(), partition)
        source = Source(self.source)
        if self.offset is not None:
            source.set_filter(self.offset._selector())  # pylint: disable=protected-access
        if owner_level:
            self.properties = {
                types.AMQPSymbol(self._epoch): types.AMQPLong(int(owner_level))
            }
        self._handler = ReceiveClient(
            source,
            auth=self.client.get_auth(),
            debug=self.client.config.network_tracing,
            prefetch=self.prefetch,
            link_properties=self.properties,
            timeout=self.timeout,
            error_policy=self.retry_policy,
            keep_alive_interval=self.keep_alive,
            client_name=self.name,
            properties=self.client._create_properties(
                self.client.config.user_agent))  # pylint: disable=protected-access

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.close(exc_val)

    def __iter__(self):
        return self

    def __next__(self):
        self._open()
        max_retries = self.client.config.max_retries
        connecting_count = 0
        while True:
            connecting_count += 1
            try:
                if not self.messages_iter:
                    self.messages_iter = self._handler.receive_messages_iter()
                message = next(self.messages_iter)
                event_data = EventData(message=message)
                self.offset = EventPosition(event_data.offset, inclusive=False)
                return event_data
            except errors.AuthenticationException as auth_error:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer disconnected due to token error. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info(
                        "EventHubConsumer authentication failed. Shutting down."
                    )
                    error = AuthenticationError(str(auth_error), auth_error)
                    self.close(auth_error)
                    raise error
            except (errors.LinkDetach, errors.ConnectionClose) as shutdown:
                if shutdown.action.retry and self.auto_reconnect:
                    log.info(
                        "EventHubConsumer detached. Attempting reconnect.")
                    self._reconnect()
                else:
                    log.info("EventHubConsumer detached. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(exception=error)
                    raise error
            except errors.MessageHandlerError as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer detached. Attempting reconnect.")
                    self._reconnect()
                else:
                    log.info("EventHubConsumer detached. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(error)
                    raise error
            except errors.AMQPConnectionError as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer connection lost. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info(
                        "EventHubConsumer connection lost. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(error)
                    raise error
            except compat.TimeoutException as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer timed out receiving event data. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info("EventHubConsumer timed out. Shutting down.")
                    self.close(shutdown)
                    raise ConnectionLostError(str(shutdown), shutdown)
            except StopIteration:
                raise
            except KeyboardInterrupt:
                log.info("EventHubConsumer stops due to keyboard interrupt")
                self.close()
                raise
            except Exception as e:
                log.error("Unexpected error occurred (%r). Shutting down.", e)
                error = EventHubError("Receive failed: {}".format(e), e)
                self.close(exception=error)
                raise error

    def _check_closed(self):
        if self.error:
            raise EventHubError(
                "This consumer has been closed. Please create a new consumer to receive event data.",
                self.error)

    def _redirect(self, redirect):
        self.redirected = redirect
        self.running = False
        self.messages_iter = None
        self._open()

    def _open(self):
        """
        Open the EventHubConsumer using the supplied connection.
        If the handler has previously been redirected, the redirect
        context will be used to create a new handler before opening it.

        """
        # pylint: disable=protected-access
        self._check_closed()
        if self.redirected:
            self.client._process_redirect_uri(self.redirected)
            self.source = self.redirected.address
            source = Source(self.source)
            if self.offset is not None:
                source.set_filter(self.offset._selector())

            alt_creds = {
                "username": self.client._auth_config.get("iot_username"),
                "password": self.client._auth_config.get("iot_password")
            }
            self._handler = ReceiveClient(
                source,
                auth=self.client.get_auth(**alt_creds),
                debug=self.client.config.network_tracing,
                prefetch=self.prefetch,
                link_properties=self.properties,
                timeout=self.timeout,
                error_policy=self.retry_policy,
                keep_alive_interval=self.keep_alive,
                client_name=self.name,
                properties=self.client._create_properties(
                    self.client.config.user_agent))  # pylint: disable=protected-access
        if not self.running:
            self._connect()
            self.running = True

    def _connect(self):
        connected = self._build_connection()
        if not connected:
            time.sleep(self.reconnect_backoff)
            while not self._build_connection(is_reconnect=True):
                time.sleep(self.reconnect_backoff)

    def _build_connection(self, is_reconnect=False):
        """

        :param is_reconnect: True - trying to reconnect after fail to connect or a connection is lost.
                             False - the 1st time to connect
        :return: True - connected.  False - not connected
        """
        # pylint: disable=protected-access
        if is_reconnect:
            alt_creds = {
                "username": self.client._auth_config.get("iot_username"),
                "password": self.client._auth_config.get("iot_password")
            }
            self._handler.close()
            source = Source(self.source)
            if self.offset is not None:
                source.set_filter(self.offset._selector())
            self._handler = ReceiveClient(
                source,
                auth=self.client.get_auth(**alt_creds),
                debug=self.client.config.network_tracing,
                prefetch=self.prefetch,
                link_properties=self.properties,
                timeout=self.timeout,
                error_policy=self.retry_policy,
                keep_alive_interval=self.keep_alive,
                client_name=self.name,
                properties=self.client._create_properties(
                    self.client.config.user_agent))  # pylint: disable=protected-access
            self.messages_iter = None
        try:
            self._handler.open()
            while not self._handler.client_ready():
                time.sleep(0.05)
            return True
        except errors.AuthenticationException as shutdown:
            if is_reconnect:
                log.info(
                    "EventHubConsumer couldn't authenticate. Shutting down. (%r)",
                    shutdown)
                error = AuthenticationError(str(shutdown), shutdown)
                self.close(exception=error)
                raise error
            else:
                log.info(
                    "EventHubConsumer couldn't authenticate. Attempting reconnect."
                )
                return False
        except errors.LinkRedirect as redirect:
            self._redirect(redirect)
            return True
        except (errors.LinkDetach, errors.ConnectionClose) as shutdown:
            if shutdown.action.retry:
                log.info("EventHubConsumer detached. Attempting reconnect.")
                return False
            else:
                log.info("EventHubConsumer detached. Shutting down.")
                error = ConnectError(str(shutdown), shutdown)
                self.close(exception=error)
                raise error
        except errors.MessageHandlerError as shutdown:
            if is_reconnect:
                log.info("EventHubConsumer detached. Shutting down.")
                error = ConnectError(str(shutdown), shutdown)
                self.close(exception=error)
                raise error
            else:
                log.info("EventHubConsumer detached. Attempting reconnect.")
                return False
        except errors.AMQPConnectionError as shutdown:
            if is_reconnect:
                log.info(
                    "EventHubConsumer connection error (%r). Shutting down.",
                    shutdown)
                error = AuthenticationError(str(shutdown), shutdown)
                self.close(exception=error)
                raise error
            else:
                log.info(
                    "EventHubConsumer couldn't authenticate. Attempting reconnect."
                )
                return False
        except compat.TimeoutException as shutdown:
            if is_reconnect:
                log.info(
                    "EventHubConsumer authentication timed out. Shutting down."
                )
                error = AuthenticationError(str(shutdown), shutdown)
                self.close(exception=error)
                raise error
            else:
                log.info(
                    "EventHubConsumer authentication timed out. Attempting reconnect."
                )
                return False
        except Exception as e:
            log.error(
                "Unexpected error occurred when building connection (%r). Shutting down.",
                e)
            error = EventHubError(
                "Unexpected error occurred when building connection", e)
            self.close(exception=error)
            raise error

    def _reconnect(self):
        return self._build_connection(is_reconnect=True)

    @property
    def queue_size(self):
        # type:() -> int
        """
        The current size of the unprocessed Event queue.

        :rtype: int
        """
        # pylint: disable=protected-access
        if self._handler._received_messages:
            return self._handler._received_messages.qsize()
        return 0

    def receive(self, max_batch_size=None, timeout=None):
        # type:(int, float) -> List[EventData]
        """
        Receive events from the EventHub.

        :param max_batch_size: Receive a batch of events. Batch size will
         be up to the maximum specified, but will return as soon as service
         returns no new events. If combined with a timeout and no events are
         retrieve before the time, the result will be empty. If no batch
         size is supplied, the prefetch size will be the maximum.
        :type max_batch_size: int
        :param timeout: The maximum wait time to build up the requested message count for the batch.
         If not specified, the default wait time specified when the consumer was created will be used.
        :type timeout: float
        :rtype: list[~azure.eventhub.common.EventData]
        :raises: ~azure.eventhub.AuthenticationError, ~azure.eventhub.ConnectError, ~azure.eventhub.ConnectionLostError,
                ~azure.eventhub.EventHubError
        Example:
            .. literalinclude:: ../examples/test_examples_eventhub.py
                :start-after: [START eventhub_client_sync_receive]
                :end-before: [END eventhub_client_sync_receive]
                :language: python
                :dedent: 4
                :caption: Receive events from the EventHub.

        """
        self._check_closed()
        self._open()

        max_batch_size = min(
            self.client.config.max_batch_size,
            self.prefetch) if max_batch_size is None else max_batch_size
        timeout = self.client.config.receive_timeout if timeout is None else timeout

        data_batch = []  # type: List[EventData]
        max_retries = self.client.config.max_retries
        connecting_count = 0
        while True:
            connecting_count += 1
            try:
                timeout_ms = 1000 * timeout if timeout else 0
                message_batch = self._handler.receive_message_batch(
                    max_batch_size=max_batch_size -
                    (len(data_batch) if data_batch else 0),
                    timeout=timeout_ms)
                for message in message_batch:
                    event_data = EventData(message=message)
                    self.offset = EventPosition(event_data.offset)
                    data_batch.append(event_data)
                return data_batch
            except errors.AuthenticationException as auth_error:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer disconnected due to token error. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info(
                        "EventHubConsumer authentication failed. Shutting down."
                    )
                    error = AuthenticationError(str(auth_error), auth_error)
                    self.close(auth_error)
                    raise error
            except (errors.LinkDetach, errors.ConnectionClose) as shutdown:
                if shutdown.action.retry and self.auto_reconnect:
                    log.info(
                        "EventHubConsumer detached. Attempting reconnect.")
                    self._reconnect()
                else:
                    log.info("EventHubConsumer detached. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(exception=error)
                    raise error
            except errors.MessageHandlerError as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer detached. Attempting reconnect.")
                    self._reconnect()
                else:
                    log.info("EventHubConsumer detached. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(error)
                    raise error
            except errors.AMQPConnectionError as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer connection lost. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info(
                        "EventHubConsumer connection lost. Shutting down.")
                    error = ConnectionLostError(str(shutdown), shutdown)
                    self.close(error)
                    raise error
            except compat.TimeoutException as shutdown:
                if connecting_count < max_retries:
                    log.info(
                        "EventHubConsumer timed out receiving event data. Attempting reconnect."
                    )
                    self._reconnect()
                else:
                    log.info("EventHubConsumer timed out. Shutting down.")
                    self.close(shutdown)
                    raise ConnectionLostError(str(shutdown), shutdown)
            except KeyboardInterrupt:
                log.info("EventHubConsumer stops due to keyboard interrupt")
                self.close()
                raise
            except Exception as e:
                log.error("Unexpected error occurred (%r). Shutting down.", e)
                error = EventHubError("Receive failed: {}".format(e), e)
                self.close(exception=error)
                raise error

    def close(self, exception=None):
        # type:(Exception) -> None
        """
        Close down the handler. If the handler has already closed,
        this will be a no op. An optional exception can be passed in to
        indicate that the handler was shutdown due to error.

        :param exception: An optional exception if the handler is closing
         due to an error.
        :type exception: Exception

        Example:
            .. literalinclude:: ../examples/test_examples_eventhub.py
                :start-after: [START eventhub_client_receiver_close]
                :end-before: [END eventhub_client_receiver_close]
                :language: python
                :dedent: 4
                :caption: Close down the handler.

        """
        if self.messages_iter:
            self.messages_iter.close()
            self.messages_iter = None
        self.running = False
        if self.error:
            return
        if isinstance(exception, errors.LinkRedirect):
            self.redirected = exception
        elif isinstance(exception, EventHubError):
            self.error = exception
        elif exception:
            self.error = EventHubError(str(exception))
        else:
            self.error = EventHubError("This receive handler is now closed.")
        self._handler.close()

    next = __next__  # for python2.7
class Receiver(BaseHandler):  # pylint: disable=too-many-instance-attributes
    """A message receiver.

    This receive handler acts as an iterable message stream for retrieving
    messages for a Service Bus entity. It operates a single connection that must be opened and
    closed on completion. The service connection will remain open for the entirety of the iterator.
    If you find yourself only partially iterating the message stream, you should run the receiver
    in a `with` statement to ensure the connection is closed.
    The Receiver should not be instantiated directly, and should be accessed from a `QueueClient` or
    `SubscriptionClient` using the `get_receiver()` method.

    .. note:: This object is not thread-safe.

    :param handler_id: The ID used as the connection name for the Receiver.
    :type handler_id: str
    :param source: The endpoint from which to receive messages.
    :type source: ~uamqp.Source
    :param auth_config: The SASL auth credentials.
    :type auth_config: dict[str, str]
    :param connection: A shared connection [not yet supported].
    :type connection: ~uamqp.Connection
    :param mode: The receive connection mode. Value must be either PeekLock or ReceiveAndDelete.
    :type mode: ~azure.servicebus.common.constants.ReceiveSettleMode
    :param encoding: The encoding used for string properties. Default is 'UTF-8'.
    :type encoding: str
    :param debug: Whether to enable network trace debug logs.
    :type debug: bool

    Example:
        .. literalinclude:: ../examples/test_examples.py
            :start-after: [START get_receiver]
            :end-before: [END get_receiver]
            :language: python
            :dedent: 4
            :caption: Get the receiver client from Service Bus client

    """

    def __init__(
            self, handler_id, source, auth_config, connection=None,
            mode=ReceiveSettleMode.PeekLock, encoding='UTF-8', debug=False, **kwargs):
        self._used = threading.Event()
        self.name = "SBReceiver-{}".format(handler_id)
        self.last_received = None
        self.mode = mode
        self.message_iter = None
        super(Receiver, self).__init__(
            source, auth_config, connection=connection, encoding=encoding, debug=debug, **kwargs)

    def __iter__(self):
        return self

    def __next__(self):
        self._can_run()
        while True:
            if self.receiver_shutdown:
                self.close()
                raise StopIteration
            try:
                received = next(self.message_iter)
                wrapped = self._build_message(received)
                return wrapped
            except StopIteration:
                self.close()
                raise
            except Exception as e:  # pylint: disable=broad-except
                self._handle_exception(e)

    def _build_handler(self):
        auth = None if self.connection else authentication.SASTokenAuth.from_shared_access_key(**self.auth_config)
        self._handler = ReceiveClient(
            self.endpoint,
            auth=auth,
            debug=self.debug,
            properties=self.properties,
            error_policy=self.error_policy,
            client_name=self.name,
            auto_complete=False,
            encoding=self.encoding,
            **self.handler_kwargs)

    def _build_message(self, received):
        message = Message(None, message=received)
        message._receiver = self  # pylint: disable=protected-access
        self.last_received = message.sequence_number
        return message

    def _can_run(self):
        if self._used.is_set():
            raise InvalidHandlerState("Receiver has already closed.")
        if self.receiver_shutdown:
            self.close()
            raise InvalidHandlerState("Receiver has already closed.")
        if not self.running:
            self.open()

    def _renew_locks(self, *lock_tokens):
        message = {'lock-tokens': types.AMQPArray(lock_tokens)}
        return self._mgmt_request_response(
            REQUEST_RESPONSE_RENEWLOCK_OPERATION,
            message,
            mgmt_handlers.lock_renew_op)

    def _settle_deferred(self, settlement, lock_tokens, dead_letter_details=None):
        message = {
            'disposition-status': settlement,
            'lock-tokens': types.AMQPArray(lock_tokens)}
        if dead_letter_details:
            message.update(dead_letter_details)
        return self._mgmt_request_response(
            REQUEST_RESPONSE_UPDATE_DISPOSTION_OPERATION,
            message,
            mgmt_handlers.default)

    def _build_receiver(self):
        """This is a temporary patch pending a fix in uAMQP."""
        # pylint: disable=protected-access
        self._handler.message_handler = self._handler.receiver_type(
            self._handler._session,
            self._handler._remote_address,
            self._handler._name,
            on_message_received=self._handler._message_received,
            name='receiver-link-{}'.format(uuid.uuid4()),
            debug=self._handler._debug_trace,
            prefetch=self._handler._prefetch,
            max_message_size=self._handler._max_message_size,
            properties=self._handler._link_properties,
            error_policy=self._handler._error_policy,
            encoding=self._handler._encoding)
        if self.mode != ReceiveSettleMode.PeekLock:
            self._handler.message_handler.send_settle_mode = constants.SenderSettleMode.Settled
            self._handler.message_handler.receive_settle_mode = constants.ReceiverSettleMode.ReceiveAndDelete
            self._handler.message_handler._settle_mode = constants.ReceiverSettleMode.ReceiveAndDelete
        self._handler.message_handler.open()

    def next(self):
        return self.__next__()

    @property
    def receiver_shutdown(self):
        if self._handler:
            return self._handler._shutdown  # pylint: disable=protected-access
        return True

    @receiver_shutdown.setter
    def receiver_shutdown(self, value):
        if self._handler:
            self._handler._shutdown = value  # pylint: disable=protected-access
        else:
            raise ValueError("Receiver has no AMQP handler")

    @property
    def queue_size(self):
        """The current size of the unprocessed message queue.

        :rtype: int

        Example:
            .. literalinclude:: ../examples/test_examples.py
                :start-after: [START queue_size]
                :end-before: [END queue_size]
                :language: python
                :dedent: 4
                :caption: Get the number of unprocessed messages in the queue

        """
        # pylint: disable=protected-access
        if self._handler._received_messages:
            return self._handler._received_messages.qsize()
        return 0

    def peek(self, count=1, start_from=None):
        """Browse messages currently pending in the queue.

        Peeked messages are not removed from queue, nor are they locked. They cannot be completed,
        deferred or dead-lettered.

        :param count: The maximum number of messages to try and peek. The default
         value is 1.
        :type count: int
        :param start_from: A message sequence number from which to start browsing messages.
        :type start_from: int
        :rtype: list[~azure.servicebus.common.message.PeekMessage]

        Example:
            .. literalinclude:: ../examples/test_examples.py
                :start-after: [START peek_messages]
                :end-before: [END peek_messages]
                :language: python
                :dedent: 4
                :caption: Look at pending messages in the queue

        """
        if not start_from:
            start_from = self.last_received or 1
        if int(count) < 1:
            raise ValueError("count must be 1 or greater.")
        if int(start_from) < 1:
            raise ValueError("start_from must be 1 or greater.")

        self._can_run()
        message = {
            'from-sequence-number': types.AMQPLong(start_from),
            'message-count': count
        }
        return self._mgmt_request_response(
            REQUEST_RESPONSE_PEEK_OPERATION,
            message,
            mgmt_handlers.peek_op)

    def receive_deferred_messages(self, sequence_numbers, mode=ReceiveSettleMode.PeekLock):
        """Receive messages that have previously been deferred.

        When receiving deferred messages from a partitioned entity, all of the supplied
        sequence numbers must be messages from the same partition.

        :param sequence_numbers: A list of the sequence numbers of messages that have been
         deferred.
        :type sequence_numbers: list[int]
        :param mode: The receive mode, default value is PeekLock.
        :type mode: ~azure.servicebus.common.constants.ReceiveSettleMode
        :rtype: list[~azure.servicebus.common.message.DeferredMessage]

        Example:
            .. literalinclude:: ../examples/test_examples.py
                :start-after: [START receive_deferred_messages]
                :end-before: [END receive_deferred_messages]
                :language: python
                :dedent: 8
                :caption: Get the messages which were previously deferred

        """
        if not sequence_numbers:
            raise ValueError("At least one sequence number must be specified.")
        self._can_run()
        try:
            receive_mode = mode.value.value
        except AttributeError:
            receive_mode = int(mode)
        message = {
            'sequence-numbers': types.AMQPArray([types.AMQPLong(s) for s in sequence_numbers]),
            'receiver-settle-mode': types.AMQPuInt(receive_mode)
        }
        handler = functools.partial(mgmt_handlers.deferred_message_op, mode=receive_mode)
        messages = self._mgmt_request_response(
            REQUEST_RESPONSE_RECEIVE_BY_SEQUENCE_NUMBER,
            message,
            handler)
        for m in messages:
            m._receiver = self  # pylint: disable=protected-access
        return messages

    def open(self):
        """Open receiver connection and authenticate session.

        If the receiver is already open, this operation will do nothing.
        This method will be called automatically when one starts to iterate
        messages in the receiver, so there should be no need to call it directly.
        A receiver opened with this method must be explicitly closed.
        It is recommended to open a handler within a context manager as
        opposed to calling the method directly.

        .. note:: This operation is not thread-safe.

        """
        if self.running:
            return
        self.running = True
        try:
            self._handler.open(connection=self.connection)
            self.message_iter = self._handler.receive_messages_iter()
            while not self._handler.auth_complete():
                time.sleep(0.05)
            self._build_receiver()
            while not self._handler.client_ready():
                time.sleep(0.05)
        except Exception as e:  # pylint: disable=broad-except
            try:
                self._handle_exception(e)
            except:
                self.running = False
                raise

    def close(self, exception=None):
        """Close down the receiver connection.

        If the receiver has already closed, this operation will do nothing. An optional exception can be passed in to
        indicate that the handler was shutdown due to error.
        It is recommended to open a handler within a context manager as
        opposed to calling the method directly.
        The receiver will be implicitly closed on completion of the message iterator,
        however this method will need to be called explicitly if the message iterator is not run
        to completion.

        .. note:: This operation is not thread-safe.

        :param exception: An optional exception if the handler is closing
         due to an error.
        :type exception: Exception

        Example:
            .. literalinclude:: ../examples/test_examples.py
                :start-after: [START open_close_receiver_connection]
                :end-before: [END open_close_receiver_connection]
                :language: python
                :dedent: 4
                :caption: Close the connection and shutdown the receiver

        """
        if not self.running:
            return
        self.running = False
        self.receiver_shutdown = True
        self._used.set()
        super(Receiver, self).close(exception=exception)

    def fetch_next(self, max_batch_size=None, timeout=None):
        """Receive a batch of messages at once.

        This approach it optimal if you wish to process multiple messages simultaneously. Note that the
        number of messages retrieved in a single batch will be dependent on
        whether `prefetch` was set for the receiver. This call will prioritize returning
        quickly over meeting a specified batch size, and so will return as soon as at least
        one message is received and there is a gap in incoming messages regardless
        of the specified batch size.

        :param max_batch_size: Maximum number of messages in the batch. Actual number
         returned will depend on prefetch size and incoming stream rate.
        :type max_batch_size: int
        :param timeout: The time to wait in seconds for the first message to arrive.
         If no messages arrive, and no timeout is specified, this call will not return
         until the connection is closed. If specified, an no messages arrive within the
         timeout period, an empty list will be returned.
        :rtype: list[~azure.servicebus.common.message.Message]

        Example:
            .. literalinclude:: ../examples/test_examples.py
                :start-after: [START fetch_next_messages]
                :end-before: [END fetch_next_messages]
                :language: python
                :dedent: 4
                :caption: Get the messages in batch from the receiver

        """
        self._can_run()
        wrapped_batch = []
        max_batch_size = max_batch_size or self._handler._prefetch  # pylint: disable=protected-access
        try:
            timeout_ms = 1000 * timeout if timeout else 0
            batch = self._handler.receive_message_batch(
                max_batch_size=max_batch_size,
                timeout=timeout_ms)
            for received in batch:
                message = self._build_message(received)
                wrapped_batch.append(message)
        except Exception as e:  # pylint: disable=broad-except
            self._handle_exception(e)
        return wrapped_batch
class ServiceBusReceiver(BaseHandler, ReceiverMixin):  # pylint: disable=too-many-instance-attributes
    """The ServiceBusReceiver class defines a high level interface for
    receiving messages from the Azure Service Bus Queue or Topic Subscription.

    The two primary channels for message receipt are `receive()` to make a single request for messages,
    and `for message in receiver:` to continuously receive incoming messages in an ongoing fashion.

    :ivar fully_qualified_namespace: The fully qualified host name for the Service Bus namespace.
     The namespace format is: `<yournamespace>.servicebus.windows.net`.
    :vartype fully_qualified_namespace: str
    :ivar entity_path: The path of the entity that the client connects to.
    :vartype entity_path: str

    :param str fully_qualified_namespace: The fully qualified host name for the Service Bus namespace.
     The namespace format is: `<yournamespace>.servicebus.windows.net`.
    :param ~azure.core.credentials.TokenCredential credential: The credential object used for authentication which
     implements a particular interface for getting tokens. It accepts
     :class:`ServiceBusSharedKeyCredential<azure.servicebus.ServiceBusSharedKeyCredential>`, or credential objects
     generated by the azure-identity library and objects that implement the `get_token(self, *scopes)` method.
    :keyword str queue_name: The path of specific Service Bus Queue the client connects to.
    :keyword str topic_name: The path of specific Service Bus Topic which contains the Subscription
     the client connects to.
    :keyword str subscription_name: The path of specific Service Bus Subscription under the
     specified Topic the client connects to.
    :keyword int prefetch: The maximum number of messages to cache with each request to the service.
     The default value is 0, meaning messages will be received from the service and processed
     one at a time. Increasing this value will improve message throughput performance but increase
     the change that messages will expire while they are cached if they're not processed fast enough.
    :keyword float idle_timeout: The timeout in seconds between received messages after which the receiver will
     automatically shutdown. The default value is 0, meaning no timeout.
    :keyword mode: The mode with which messages will be retrieved from the entity. The two options
     are PeekLock and ReceiveAndDelete. Messages received with PeekLock must be settled within a given
     lock period before they will be removed from the queue. Messages received with ReceiveAndDelete
     will be immediately removed from the queue, and cannot be subsequently abandoned or re-received
     if the client fails to process the message.
     The default mode is PeekLock.
    :paramtype mode: ~azure.servicebus.ReceiveSettleMode
    :keyword bool logging_enable: Whether to output network trace logs to the logger. Default is `False`.
    :keyword int retry_total: The total number of attempts to redo a failed operation when an error occurs.
     Default value is 3.
    :keyword transport_type: The type of transport protocol that will be used for communicating with
     the Service Bus service. Default is `TransportType.Amqp`.
    :paramtype transport_type: ~azure.servicebus.TransportType
    :keyword dict http_proxy: HTTP proxy settings. This must be a dictionary with the following
     keys: `'proxy_hostname'` (str value) and `'proxy_port'` (int value).
     Additionally the following keys may also be present: `'username', 'password'`.

    .. admonition:: Example:

        .. literalinclude:: ../samples/sync_samples/sample_code_servicebus.py
            :start-after: [START create_servicebus_receiver_sync]
            :end-before: [END create_servicebus_receiver_sync]
            :language: python
            :dedent: 4
            :caption: Create a new instance of the ServiceBusReceiver.

    """
    def __init__(self, fully_qualified_namespace, credential, **kwargs):
        # type: (str, TokenCredential, Any) -> None
        if kwargs.get("entity_name"):
            super(ServiceBusReceiver, self).__init__(
                fully_qualified_namespace=fully_qualified_namespace,
                credential=credential,
                **kwargs)
        else:
            queue_name = kwargs.get("queue_name")  # type: Optional[str]
            topic_name = kwargs.get("topic_name")  # type: Optional[str]
            subscription_name = kwargs.get("subscription_name")
            if queue_name and topic_name:
                raise ValueError(
                    "Queue/Topic name can not be specified simultaneously.")
            if topic_name and not subscription_name:
                raise ValueError(
                    "Subscription name is missing for the topic. Please specify subscription_name."
                )
            entity_name = queue_name or topic_name
            if not entity_name:
                raise ValueError(
                    "Queue/Topic name is missing. Please specify queue_name/topic_name."
                )

            super(ServiceBusReceiver, self).__init__(
                fully_qualified_namespace=fully_qualified_namespace,
                credential=credential,
                entity_name=entity_name,
                **kwargs)

        self._populate_attributes(**kwargs)

    def __iter__(self):
        return self

    def __next__(self):
        self._check_live()
        while True:
            try:
                return self._do_retryable_operation(self._iter_next)
            except StopIteration:
                self.close()
                raise

    next = __next__  # for python2.7

    def _iter_next(self):
        self._open()
        uamqp_message = next(self._message_iter)
        message = self._build_message(uamqp_message)
        return message

    def _create_handler(self, auth):
        # type: (AMQPAuth) -> None
        self._handler = ReceiveClient(
            self._get_source(),
            auth=auth,
            debug=self._config.logging_enable,
            properties=self._properties,
            error_policy=self._error_policy,
            client_name=self._name,
            on_attach=self._on_attach,
            auto_complete=False,
            encoding=self._config.encoding,
            receive_settle_mode=self._mode.value,
            send_settle_mode=SenderSettleMode.Settled
            if self._mode == ReceiveSettleMode.ReceiveAndDelete else None,
            timeout=self._idle_timeout * 1000 if self._idle_timeout else 0,
            prefetch=self._prefetch)

    def _open(self):
        if self._running:
            return
        if self._handler:
            self._handler.close()

        auth = None if self._connection else create_authentication(self)
        self._create_handler(auth)
        try:
            self._handler.open(connection=self._connection)
            self._message_iter = self._handler.receive_messages_iter()  # pylint: disable=attribute-defined-outside-init
            while not self._handler.client_ready():
                time.sleep(0.05)
            self._running = True
        except:
            self.close()
            raise

    def _receive(self, max_batch_size=None, timeout=None):
        # type: (Optional[int], Optional[float]) -> List[ReceivedMessage]
        self._open()
        max_batch_size = max_batch_size or self._handler._prefetch  # pylint: disable=protected-access

        timeout_ms = 1000 * (timeout or self._idle_timeout) if (
            timeout or self._idle_timeout) else 0
        batch = self._handler.receive_message_batch(
            max_batch_size=max_batch_size, timeout=timeout_ms)

        return [self._build_message(message) for message in batch]

    def _settle_message(self,
                        settlement,
                        lock_tokens,
                        dead_letter_details=None):
        # type: (bytes, List[str], Optional[Dict[str, Any]]) -> Any
        message = {
            MGMT_REQUEST_DISPOSITION_STATUS: settlement,
            MGMT_REQUEST_LOCK_TOKENS: types.AMQPArray(lock_tokens)
        }

        self._populate_message_properties(message)
        if dead_letter_details:
            message.update(dead_letter_details)

        return self._mgmt_request_response_with_retry(
            REQUEST_RESPONSE_UPDATE_DISPOSTION_OPERATION, message,
            mgmt_handlers.default)

    def _renew_locks(self, *lock_tokens):
        # type: (*str) -> Any
        message = {MGMT_REQUEST_LOCK_TOKENS: types.AMQPArray(lock_tokens)}
        return self._mgmt_request_response_with_retry(
            REQUEST_RESPONSE_RENEWLOCK_OPERATION, message,
            mgmt_handlers.lock_renew_op)

    @classmethod
    def from_connection_string(cls, conn_str, **kwargs):
        # type: (str, Any) -> ServiceBusReceiver
        """Create a ServiceBusReceiver from a connection string.

        :param conn_str: The connection string of a Service Bus.
        :keyword str queue_name: The path of specific Service Bus Queue the client connects to.
        :keyword str topic_name: The path of specific Service Bus Topic which contains the Subscription
         the client connects to.
        :keyword str subscription_name: The path of specific Service Bus Subscription under the
         specified Topic the client connects to.
        :keyword mode: The mode with which messages will be retrieved from the entity. The two options
         are PeekLock and ReceiveAndDelete. Messages received with PeekLock must be settled within a given
         lock period before they will be removed from the queue. Messages received with ReceiveAndDelete
         will be immediately removed from the queue, and cannot be subsequently abandoned or re-received
         if the client fails to process the message.
         The default mode is PeekLock.
        :paramtype mode: ~azure.servicebus.ReceiveSettleMode
        :keyword int prefetch: The maximum number of messages to cache with each request to the service.
         The default value is 0, meaning messages will be received from the service and processed
         one at a time. Increasing this value will improve message throughput performance but increase
         the change that messages will expire while they are cached if they're not processed fast enough.
        :keyword float idle_timeout: The timeout in seconds between received messages after which the receiver will
         automatically shutdown. The default value is 0, meaning no timeout.
        :keyword bool logging_enable: Whether to output network trace logs to the logger. Default is `False`.
        :keyword int retry_total: The total number of attempts to redo a failed operation when an error occurs.
         Default value is 3.
        :keyword transport_type: The type of transport protocol that will be used for communicating with
         the Service Bus service. Default is `TransportType.Amqp`.
        :paramtype transport_type: ~azure.servicebus.TransportType
        :keyword dict http_proxy: HTTP proxy settings. This must be a dictionary with the following
         keys: `'proxy_hostname'` (str value) and `'proxy_port'` (int value).
         Additionally the following keys may also be present: `'username', 'password'`.
        :rtype: ~azure.servicebus.ServiceBusReceiver

        .. admonition:: Example:

            .. literalinclude:: ../samples/sync_samples/sample_code_servicebus.py
                :start-after: [START create_servicebus_receiver_from_conn_str_sync]
                :end-before: [END create_servicebus_receiver_from_conn_str_sync]
                :language: python
                :dedent: 4
                :caption: Create a new instance of the ServiceBusReceiver from connection string.

        """
        constructor_args = _convert_connection_string_to_kwargs(
            conn_str, ServiceBusSharedKeyCredential, **kwargs)
        if kwargs.get("queue_name") and kwargs.get("subscription_name"):
            raise ValueError("Queue entity does not have subscription.")

        if kwargs.get("topic_name") and not kwargs.get("subscription_name"):
            raise ValueError(
                "Subscription name is missing for the topic. Please specify subscription_name."
            )
        return cls(**constructor_args)

    def receive_messages(self, max_batch_size=None, max_wait_time=None):
        # type: (int, float) -> List[ReceivedMessage]
        """Receive a batch of messages at once.

        This approach is optimal if you wish to process multiple messages simultaneously, or
        perform an ad-hoc receive as a single call.

        Note that the number of messages retrieved in a single batch will be dependent on
        whether `prefetch` was set for the receiver. This call will prioritize returning
        quickly over meeting a specified batch size, and so will return as soon as at least
        one message is received and there is a gap in incoming messages regardless
        of the specified batch size.

        :param int max_batch_size: Maximum number of messages in the batch. Actual number
         returned will depend on prefetch size and incoming stream rate.
        :param float max_wait_time: Maximum time to wait in seconds for the first message to arrive.
         If no messages arrive, and no timeout is specified, this call will not return
         until the connection is closed. If specified, an no messages arrive within the
         timeout period, an empty list will be returned.
        :rtype: list[~azure.servicebus.ReceivedMessage]

        .. admonition:: Example:

            .. literalinclude:: ../samples/sync_samples/sample_code_servicebus.py
                :start-after: [START receive_sync]
                :end-before: [END receive_sync]
                :language: python
                :dedent: 4
                :caption: Receive messages from ServiceBus.

        """
        self._check_live()
        if max_batch_size and self._prefetch < max_batch_size:
            raise ValueError(
                "max_batch_size should be less than or equal to prefetch of ServiceBusReceiver, or you "
                "could set a larger prefetch value when you're constructing the ServiceBusReceiver."
            )
        return self._do_retryable_operation(self._receive,
                                            max_batch_size=max_batch_size,
                                            timeout=max_wait_time,
                                            require_timeout=True)

    def receive_deferred_messages(self, sequence_numbers):
        # type: (List[int]) -> List[ReceivedMessage]
        """Receive messages that have previously been deferred.

        When receiving deferred messages from a partitioned entity, all of the supplied
        sequence numbers must be messages from the same partition.

        :param list[int] sequence_numbers: A list of the sequence numbers of messages that have been
         deferred.
        :rtype: list[~azure.servicebus.ReceivedMessage]

        .. admonition:: Example:

            .. literalinclude:: ../samples/sync_samples/sample_code_servicebus.py
                :start-after: [START receive_defer_sync]
                :end-before: [END receive_defer_sync]
                :language: python
                :dedent: 4
                :caption: Receive deferred messages from ServiceBus.

        """
        self._check_live()
        if not sequence_numbers:
            raise ValueError("At least one sequence number must be specified.")
        self._open()
        try:
            receive_mode = self._mode.value.value
        except AttributeError:
            receive_mode = int(self._mode)
        message = {
            MGMT_REQUEST_SEQUENCE_NUMBERS:
            types.AMQPArray([types.AMQPLong(s) for s in sequence_numbers]),
            MGMT_REQUEST_RECEIVER_SETTLE_MODE:
            types.AMQPuInt(receive_mode)
        }

        self._populate_message_properties(message)

        handler = functools.partial(mgmt_handlers.deferred_message_op,
                                    mode=self._mode)
        messages = self._mgmt_request_response_with_retry(
            REQUEST_RESPONSE_RECEIVE_BY_SEQUENCE_NUMBER, message, handler)
        for m in messages:
            m._receiver = self  # pylint: disable=protected-access
        return messages

    def peek_messages(self, message_count=1, sequence_number=None):
        # type: (int, Optional[int]) -> List[PeekMessage]
        """Browse messages currently pending in the queue.

        Peeked messages are not removed from queue, nor are they locked. They cannot be completed,
        deferred or dead-lettered.

        :param int message_count: The maximum number of messages to try and peek. The default
         value is 1.
        :param int sequence_number: A message sequence number from which to start browsing messages.
        :rtype: list[~azure.servicebus.PeekMessage]

        .. admonition:: Example:

            .. literalinclude:: ../samples/sync_samples/sample_code_servicebus.py
                :start-after: [START peek_messages_sync]
                :end-before: [END peek_messages_sync]
                :language: python
                :dedent: 4
                :caption: Look at pending messages in the queue.

        """
        self._check_live()
        if not sequence_number:
            sequence_number = self._last_received_sequenced_number or 1
        if int(message_count) < 1:
            raise ValueError("count must be 1 or greater.")
        if int(sequence_number) < 1:
            raise ValueError("start_from must be 1 or greater.")

        self._open()
        message = {
            MGMT_REQUEST_FROM_SEQUENCE_NUMBER: types.AMQPLong(sequence_number),
            MGMT_REQUEST_MESSAGE_COUNT: message_count
        }

        self._populate_message_properties(message)

        return self._mgmt_request_response_with_retry(
            REQUEST_RESPONSE_PEEK_OPERATION, message, mgmt_handlers.peek_op)
Esempio n. 4
0
class Receiver(BaseHandler):  # pylint: disable=too-many-instance-attributes
    """A message receiver.

    This receive handler acts as an iterable message stream for retrieving
    messages for a Service Bus entity. It operates a single connection that must be opened and
    closed on completion. The service connection will remain open for the entirety of the iterator.
    If you find yourself only partially iterating the message stream, you should run the receiver
    in a `with` statement to ensure the connection is closed.
    The Receiver should not be instantiated directly, and should be accessed from a `QueueClient` or
    `SubscriptionClient` using the `get_receiver()` method.

    .. note:: This object is not thread-safe.

    :param handler_id: The ID used as the connection name for the Receiver.
    :type handler_id: str
    :param source: The endpoint from which to receive messages.
    :type source: ~uamqp.Source
    :param auth_config: The SASL auth credentials.
    :type auth_config: dict[str, str]
    :param connection: A shared connection [not yet supported].
    :type connection: ~uamqp.Connection
    :param mode: The receive connection mode. Value must be either PeekLock or ReceiveAndDelete.
    :type mode: ~azure.servicebus.common.constants.ReceiveSettleMode
    :param encoding: The encoding used for string properties. Default is 'UTF-8'.
    :type encoding: str
    :param debug: Whether to enable network trace debug logs.
    :type debug: bool

    .. admonition:: Example:
        .. literalinclude:: ../samples/sync_samples/test_examples.py
            :start-after: [START get_receiver]
            :end-before: [END get_receiver]
            :language: python
            :dedent: 4
            :caption: Get the receiver client from Service Bus client

    """
    def __init__(self,
                 handler_id,
                 source,
                 auth_config,
                 connection=None,
                 mode=ReceiveSettleMode.PeekLock,
                 encoding='UTF-8',
                 debug=False,
                 **kwargs):
        self._used = threading.Event()
        self.name = "SBReceiver-{}".format(handler_id)
        self.last_received = None
        self.mode = mode
        self.message_iter = None
        super(Receiver, self).__init__(source,
                                       auth_config,
                                       connection=connection,
                                       encoding=encoding,
                                       debug=debug,
                                       **kwargs)

    def __iter__(self):
        return self

    def __next__(self):
        self._can_run()
        while True:
            if self.receiver_shutdown:
                self.close()
                raise StopIteration
            try:
                received = next(self.message_iter)
                wrapped = self._build_message(received)
                return wrapped
            except StopIteration:
                self.close()
                raise
            except Exception as e:  # pylint: disable=broad-except
                self._handle_exception(e)

    def _build_handler(self):
        auth = None if self.connection else authentication.SASTokenAuth.from_shared_access_key(
            **self.auth_config)
        self._handler = ReceiveClient(self.endpoint,
                                      auth=auth,
                                      debug=self.debug,
                                      properties=self.properties,
                                      error_policy=self.error_policy,
                                      client_name=self.name,
                                      auto_complete=False,
                                      encoding=self.encoding,
                                      **self.handler_kwargs)

    def _build_message(self, received):
        message = Message(None, message=received)
        message._receiver = self  # pylint: disable=protected-access
        self.last_received = message.sequence_number
        return message

    def _can_run(self):
        if self._used.is_set():
            raise InvalidHandlerState("Receiver has already closed.")
        if self.receiver_shutdown:
            self.close()
            raise InvalidHandlerState("Receiver has already closed.")
        if not self.running:
            self.open()

    def _renew_locks(self, *lock_tokens):
        message = {'lock-tokens': types.AMQPArray(lock_tokens)}
        return self._mgmt_request_response(
            REQUEST_RESPONSE_RENEWLOCK_OPERATION, message,
            mgmt_handlers.lock_renew_op)

    def _settle_deferred(self,
                         settlement,
                         lock_tokens,
                         dead_letter_details=None):
        message = {
            'disposition-status': settlement,
            'lock-tokens': types.AMQPArray(lock_tokens)
        }
        if dead_letter_details:
            message.update(dead_letter_details)
        return self._mgmt_request_response(
            REQUEST_RESPONSE_UPDATE_DISPOSTION_OPERATION, message,
            mgmt_handlers.default)

    def _build_receiver(self):
        """This is a temporary patch pending a fix in uAMQP."""
        # pylint: disable=protected-access
        self._handler.message_handler = self._handler.receiver_type(
            self._handler._session,
            self._handler._remote_address,
            self._handler._name,
            on_message_received=self._handler._message_received,
            name='receiver-link-{}'.format(uuid.uuid4()),
            debug=self._handler._debug_trace,
            prefetch=self._handler._prefetch,
            max_message_size=self._handler._max_message_size,
            properties=self._handler._link_properties,
            error_policy=self._handler._error_policy,
            encoding=self._handler._encoding)
        if self.mode != ReceiveSettleMode.PeekLock:
            self._handler.message_handler.send_settle_mode = constants.SenderSettleMode.Settled
            self._handler.message_handler.receive_settle_mode = constants.ReceiverSettleMode.ReceiveAndDelete
            self._handler.message_handler._settle_mode = constants.ReceiverSettleMode.ReceiveAndDelete
        self._handler.message_handler.open()

    def next(self):
        return self.__next__()

    @property
    def receiver_shutdown(self):
        if self._handler:
            return self._handler._shutdown  # pylint: disable=protected-access
        return True

    @receiver_shutdown.setter
    def receiver_shutdown(self, value):
        if self._handler:
            self._handler._shutdown = value  # pylint: disable=protected-access
        else:
            raise ValueError("Receiver has no AMQP handler")

    @property
    def queue_size(self):
        """The current size of the unprocessed message queue.

        :rtype: int

        .. admonition:: Example:
            .. literalinclude:: ../samples/sync_samples/test_examples.py
                :start-after: [START queue_size]
                :end-before: [END queue_size]
                :language: python
                :dedent: 4
                :caption: Get the number of unprocessed messages in the queue

        """
        # pylint: disable=protected-access
        if self._handler._received_messages:
            return self._handler._received_messages.qsize()
        return 0

    def peek(self, count=1, start_from=None):
        """Browse messages currently pending in the queue.

        Peeked messages are not removed from queue, nor are they locked. They cannot be completed,
        deferred or dead-lettered.

        :param count: The maximum number of messages to try and peek. The default
         value is 1.
        :type count: int
        :param start_from: A message sequence number from which to start browsing messages.
        :type start_from: int
        :rtype: list[~azure.servicebus.common.message.PeekMessage]

        .. admonition:: Example:
            .. literalinclude:: ../samples/sync_samples/test_examples.py
                :start-after: [START peek_messages]
                :end-before: [END peek_messages]
                :language: python
                :dedent: 4
                :caption: Look at pending messages in the queue

        """
        if not start_from:
            start_from = self.last_received or 1
        if int(count) < 1:
            raise ValueError("count must be 1 or greater.")
        if int(start_from) < 1:
            raise ValueError("start_from must be 1 or greater.")

        self._can_run()
        message = {
            'from-sequence-number': types.AMQPLong(start_from),
            'message-count': count
        }
        return self._mgmt_request_response(REQUEST_RESPONSE_PEEK_OPERATION,
                                           message, mgmt_handlers.peek_op)

    def receive_deferred_messages(self,
                                  sequence_numbers,
                                  mode=ReceiveSettleMode.PeekLock):
        """Receive messages that have previously been deferred.

        When receiving deferred messages from a partitioned entity, all of the supplied
        sequence numbers must be messages from the same partition.

        :param sequence_numbers: A list of the sequence numbers of messages that have been
         deferred.
        :type sequence_numbers: list[int]
        :param mode: The receive mode, default value is PeekLock.
        :type mode: ~azure.servicebus.common.constants.ReceiveSettleMode
        :rtype: list[~azure.servicebus.common.message.DeferredMessage]

        .. admonition:: Example:
            .. literalinclude:: ../samples/sync_samples/test_examples.py
                :start-after: [START receive_deferred_messages]
                :end-before: [END receive_deferred_messages]
                :language: python
                :dedent: 8
                :caption: Get the messages which were previously deferred

        """
        if not sequence_numbers:
            raise ValueError("At least one sequence number must be specified.")
        self._can_run()
        try:
            receive_mode = mode.value.value
        except AttributeError:
            receive_mode = int(mode)
        message = {
            'sequence-numbers':
            types.AMQPArray([types.AMQPLong(s) for s in sequence_numbers]),
            'receiver-settle-mode':
            types.AMQPuInt(receive_mode)
        }
        handler = functools.partial(mgmt_handlers.deferred_message_op,
                                    mode=receive_mode)
        messages = self._mgmt_request_response(
            REQUEST_RESPONSE_RECEIVE_BY_SEQUENCE_NUMBER, message, handler)
        for m in messages:
            m._receiver = self  # pylint: disable=protected-access
        return messages

    def open(self):
        """Open receiver connection and authenticate session.

        If the receiver is already open, this operation will do nothing.
        This method will be called automatically when one starts to iterate
        messages in the receiver, so there should be no need to call it directly.
        A receiver opened with this method must be explicitly closed.
        It is recommended to open a handler within a context manager as
        opposed to calling the method directly.

        .. note:: This operation is not thread-safe.

        """
        if self.running:
            return
        self.running = True
        try:
            self._handler.open(connection=self.connection)
            self.message_iter = self._handler.receive_messages_iter()
            while not self._handler.auth_complete():
                time.sleep(0.05)
            self._build_receiver()
            while not self._handler.client_ready():
                time.sleep(0.05)
        except Exception as e:  # pylint: disable=broad-except
            try:
                self._handle_exception(e)
            except:
                self.running = False
                raise

    def close(self, exception=None):
        """Close down the receiver connection.

        If the receiver has already closed, this operation will do nothing. An optional exception can be passed in to
        indicate that the handler was shutdown due to error.
        It is recommended to open a handler within a context manager as
        opposed to calling the method directly.
        The receiver will be implicitly closed on completion of the message iterator,
        however this method will need to be called explicitly if the message iterator is not run
        to completion.

        .. note:: This operation is not thread-safe.

        :param exception: An optional exception if the handler is closing
         due to an error.
        :type exception: Exception

        .. admonition:: Example:
            .. literalinclude:: ../samples/sync_samples/test_examples.py
                :start-after: [START open_close_receiver_connection]
                :end-before: [END open_close_receiver_connection]
                :language: python
                :dedent: 4
                :caption: Close the connection and shutdown the receiver

        """
        if not self.running:
            return
        self.running = False
        self.receiver_shutdown = True
        self._used.set()
        super(Receiver, self).close(exception=exception)

    def fetch_next(self, max_batch_size=None, timeout=None):
        """Receive a batch of messages at once.

        This approach it optimal if you wish to process multiple messages simultaneously. Note that the
        number of messages retrieved in a single batch will be dependent on
        whether `prefetch` was set for the receiver. This call will prioritize returning
        quickly over meeting a specified batch size, and so will return as soon as at least
        one message is received and there is a gap in incoming messages regardless
        of the specified batch size.

        :param max_batch_size: Maximum number of messages in the batch. Actual number
         returned will depend on prefetch size and incoming stream rate.
        :type max_batch_size: int
        :param timeout: The time to wait in seconds for the first message to arrive.
         If no messages arrive, and no timeout is specified, this call will not return
         until the connection is closed. If specified, an no messages arrive within the
         timeout period, an empty list will be returned.
        :rtype: list[~azure.servicebus.common.message.Message]

        .. admonition:: Example:
            .. literalinclude:: ../samples/sync_samples/test_examples.py
                :start-after: [START fetch_next_messages]
                :end-before: [END fetch_next_messages]
                :language: python
                :dedent: 4
                :caption: Get the messages in batch from the receiver

        """
        self._can_run()
        wrapped_batch = []
        max_batch_size = max_batch_size or self._handler._prefetch  # pylint: disable=protected-access
        try:
            timeout_ms = 1000 * timeout if timeout else 0
            batch = self._handler.receive_message_batch(
                max_batch_size=max_batch_size, timeout=timeout_ms)
            for received in batch:
                message = self._build_message(received)
                wrapped_batch.append(message)
        except Exception as e:  # pylint: disable=broad-except
            self._handle_exception(e)
        return wrapped_batch