Esempio n. 1
0
def compute_integrand_scaling_factor(integral):
    """Change integrand geometry to the right representations."""

    domain = integral.ufl_domain()
    integral_type = integral.integral_type()
    # co = CellOrientation(domain)
    weight = QuadratureWeight(domain)
    tdim = domain.topological_dimension()
    # gdim = domain.geometric_dimension()

    # Polynomial degree of integrand scaling
    degree = 0
    if integral_type == "cell":
        detJ = JacobianDeterminant(domain)
        degree = estimate_total_polynomial_degree(
            apply_geometry_lowering(detJ))
        # Despite the abs, |detJ| is polynomial except for
        # self-intersecting cells, where we have other problems.
        scale = abs(detJ) * weight

    elif integral_type.startswith("exterior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant and
            # quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(
                apply_geometry_lowering(detFJ))
            scale = detFJ * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type.startswith("interior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant from one
            # side and quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(
                apply_geometry_lowering(detFJ))
            scale = detFJ('+') * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type in custom_integral_types:
        # Scaling with custom weight, which includes eventual volume
        # scaling
        scale = weight

    elif integral_type in point_integral_types:
        # No need to scale 'integral' over a point
        scale = 1

    else:
        error("Unknown integral type {}, don't know how to scale.".format(
            integral_type))

    return scale, degree
Esempio n. 2
0
def compute_integrand_scaling_factor(integral):
    """Change integrand geometry to the right representations."""

    domain = integral.ufl_domain()
    integral_type = integral.integral_type()
    # co = CellOrientation(domain)
    weight = QuadratureWeight(domain)
    tdim = domain.topological_dimension()
    # gdim = domain.geometric_dimension()

    if integral_type == "cell":
        scale = abs(JacobianDeterminant(domain)) * weight

    elif integral_type.startswith("exterior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant and
            # quadrature weight
            scale = FacetJacobianDeterminant(domain) * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type.startswith("interior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant from one
            # side and quadrature weight
            scale = FacetJacobianDeterminant(domain)('+') * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type in custom_integral_types:
        # Scaling with custom weight, which includes eventual volume
        # scaling
        scale = weight

    elif integral_type in point_integral_types:
        # No need to scale 'integral' over a point
        scale = 1

    else:
        error("Unknown integral type {}, don't know how to scale.".format(
            integral_type))

    return scale
Esempio n. 3
0
    def facet_area(self, o):
        if self._preserve_types[o._ufl_typecode_]:
            return o

        domain = o.ufl_domain()
        tdim = domain.topological_dimension()
        if not domain.is_piecewise_linear_simplex_domain():
            # Don't lower for non-affine cells, instead leave it to
            # form compiler
            warning("Only know how to compute the facet area of an affine cell.")
            return o

        # Area of "facet" of interval (i.e. "area" of a vertex) is defined as 1.0
        if tdim == 1:
            return FloatValue(1.0)

        r = self.facet_jacobian_determinant(FacetJacobianDeterminant(domain))
        r0 = ReferenceFacetVolume(domain)
        return abs(r * r0)