Esempio n. 1
0
    def estimate(self, solution):
        mesh = solution.function_space().mesh()

        # Define cell and facet residuals
        R_T = -(self.rhs_f + div(grad(solution)))
        n = FacetNormal(mesh)
        R_dT = dot(grad(solution), n)

        # Will use space of constants to localize indicator form
        Constants = FunctionSpace(mesh, "DG", 0)
        w = TestFunction(Constants)
        h = CellSize(mesh)

        # Define form for assembling error indicators
        form = (h ** 2 * R_T ** 2 * w * dx + avg(h) * avg(R_dT) ** 2 * 2 * avg(w) * dS)
    #            + h * R_dT ** 2 * w * ds)

        # Assemble error indicators
        indicators = assemble(form)

        # Calculate error
        error_estimate = sqrt(sum(i for i in indicators.array()))

        # Take sqrt of indicators
        indicators = np.array([sqrt(i) for i in indicators])

        # Mark cells for refinement based on maximal marking strategy
        largest_error = max(indicators)
        cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
        for c in cells(mesh):
            cell_markers[c] = indicators[c.index()] > (self.fraction * largest_error)

        return error_estimate, cell_markers
def calcMilesLerayDivFreeProjector(vectorFunction):
    vectorFunctionTemp = project(vectorFunction, V_vec)  ### IF THIS FAILS IT WAS PROBABLY NOT A VECTOR FUNCTION
    diverg = project(div(vectorFunction),V)
    lastTerm = project(grad(calcInverseLaplacian(diverg)), V_vec)
    returnFunction = Function(V_vec)
    returnFunction.dat.data[:] = vectorFunctionTemp.dat.data[:] - lastTerm.dat.data[:]
    return returnFunction
def calcConstants_batscaleGammaUmiles():
    ### recalculates the constants (batchelor scale, Gamma, U(in miles), tau, dominant wavelength for lap2lap 
    global UinMiles
    global GammaInMiles
    global tauInMiles
    global l_bat
    global l_dom
    global l_root
    
    # miles p 5
    UinMiles = abs(norm(u_adv,"l2")/(sqrt(L_x*L_y)))
    GammaInMiles = abs(norm(grad(u_adv),"l2")/(sqrt(L_x*L_y)))
    # irgendwie erkennt es sqrt variables immer als komplexe zahlen mit im part 0 an ...
    
    # miles p 16
    tauInMiles = 1/GammaInMiles
    # miles p 34
    if usedFlow in ['milesEnergy']:
        # miles: 
        l_bat = 3/2*kappa/UinMiles
    elif usedFlow in ['milesEnstrophy']:
        l_bat = abs(sqrt(3/2*kappa*tauInMiles))
    else:
        ### default energy but to see that it is strange put it negativ
        l_bat = -(3/2*kappa/UinMiles)
    
    if pdeShortName in ['advLap2Lap', 'kuraSiva']:
        # irgendwie erkennt es sqrt variables immer als komplexe zahlen mit im part 0 an ...
        l_dom = abs(2*sqrt(2)*pi)
        l_root = abs(2*pi)
    else:
        ### doesn't make sense but still compute and put - to indicate something strange
        l_dom = - abs(2*sqrt(2)*pi)
        l_root = - abs(2*pi)
def calcMilesOptimalFlowEnstrophyCase(function):
    funcFunction = project(function, V)
    invLap = calcInverseLaplacian(funcFunction)
    nablaInvLap = project(grad(invLap), V_vec)
    functionNablaLapInvFunction = Function(V_vec)
    functionNablaLapInvFunction.dat.data[:,0] = funcFunction.dat.data[:]*nablaInvLap.dat.data[:,0]
    functionNablaLapInvFunction.dat.data[:,1] = funcFunction.dat.data[:]*nablaInvLap.dat.data[:,1]
    projection = calcMilesLerayDivFreeProjector(functionNablaLapInvFunction)
    projectionX = Function(V)
    projectionY = Function(V)
    projectionX.dat.data[:] = projection.dat.data[:,0]
    projectionY.dat.data[:] = projection.dat.data[:,1]
    minNablaInvunctionNablaLapInvFunction = Function(V_vec)
    minNablaInvunctionNablaLapInvFunction.dat.data[:,0] = -calcInverseLaplacian(projectionX).dat.data[:]
    minNablaInvunctionNablaLapInvFunction.dat.data[:,1] = -calcInverseLaplacian(projectionY).dat.data[:]
    normalisationFactor = abs(sqrt(L_x*L_y))/(norm(grad(minNablaInvunctionNablaLapInvFunction),"l2"))            ### in the code of miles they somehow use curl instead of grad
    #normalisationFactor = 1/(norm((minNablaInvunctionNablaLapInvFunction)))
    #print(normalisationFactor)
    retFunction = minNablaInvunctionNablaLapInvFunction
    retFunction.dat.data[:] = adv_scale*normalisationFactor*minNablaInvunctionNablaLapInvFunction.dat.data[:]
    return retFunction
def calcMilesOptimalFlowEnergyCase(function):
    funcFunction = project(function, V)
    invLap = calcInverseLaplacian(funcFunction)
    nablaInvLap = project(grad(invLap), V_vec)
    functionNablaLapInvFunction = Function(V_vec)
    functionNablaLapInvFunction.dat.data[:,0] = funcFunction.dat.data[:]*nablaInvLap.dat.data[:,0]
    functionNablaLapInvFunction.dat.data[:,1] = funcFunction.dat.data[:]*nablaInvLap.dat.data[:,1]
    projection = calcMilesLerayDivFreeProjector(functionNablaLapInvFunction)
    #normalisationFactor = 1/((calcSpatialAverage(calcAbsOfVectorFunction(projection))**2)**(1/2))
    normalisationFactor = abs(sqrt(L_x*L_y))/(norm(projection,"l2"))
    #print(normalisationFactor)
    retFunction = projection
    retFunction.dat.data[:] = adv_scale*normalisationFactor*projection.dat.data[:]
    return retFunction
def calcInverseLaplacian(function):
    # returns lap^-1 f
    # f=function, u = outFunction
    # lap u = f
    # <lap u, v> =<f,v>
    # <-grad u, grad v> = <f,v>
    # <-grad u, grad v> - <f,v> = 0
    # <grad u, grad v> + <f,v> = 0 
    #print("1",function.dat.data)
    if inverseLaplacianEnforceAverageFreeBefore:
        if norm(getZeroAverageOfScalarFunction(function)-function,"l2")>0.01*((L_x*L_y)**0.5):
            print("!!!warning!!! initial data of get inverse laplacian is non average free -> enforcing average free")
        function = getZeroAverageOfScalarFunction(function)
    
    outFunction = Function(V)
    testFunctionInvLap = TestFunction(V)
    F_invLap = (inner(grad(outFunction),grad(testFunctionInvLap))+dot(function,testFunctionInvLap))*dx
    solve(F_invLap == 0, outFunction)
    if inverseLaplacianEnforceAverageFreeAfter:
        if norm(getZeroAverageOfScalarFunction(outFunction)-outFunction,"l2")>0.01*((L_x*L_y)**0.5):
            print("!!!warning!!! result of get inverse laplacian is non average free -> enforcing average free")
        outFunction = getZeroAverageOfScalarFunction(outFunction)
    return outFunction
def writeOutputMeshFunctions():
    
    outTheta1 = getOutputMeshFunctionScalar(theta, "theta")
    #outTheta2 = getOutputMeshFunctionScalar(theta, "theta (2)")
    #outTheta3 = getOutputMeshFunctionScalar(theta, "theta (3)")
    
    gradTheta = project(grad(theta), V_vec)
    outGradThetaX = getOutputMeshFunctionScalar(gradTheta, "d/dx theta", None, 0)
    outGradThetaY = getOutputMeshFunctionScalar(gradTheta, "d/dy theta", None, 1)
    
    outUadvX = getOutputMeshFunctionScalar(u_adv, "u_adv x", None, 0)
    outUadvY = getOutputMeshFunctionScalar(u_adv, "u_adv y", None, 1)
    
    #l_domFunction = Function(V).assign(l_dom)
    #outLdom = getOutputMeshFunctionScalar(None,"l_dominant", l_dom)

    #outfile_theta.write(outTheta1, outTheta2, outTheta3, outGradThetaX, outGradThetaY, outUadvX, outUadvY, outLdom, time=t)
    outfile_theta.write(outTheta1, outGradThetaX, outGradThetaY, outUadvX, outUadvY, time=t)
def calcCamillaTestFlow(function):
    #u_adv = theta nalba^-1 theta - nabla^-1(nabla theta cdot nabla^-1 theta) - nabla^-1 (theta^2)
    nablaMinusOneFunction = calcDivMinus1ofScalar(function)
    GradFunction = project(grad(function),V_vec)
    functionSq = Function(V)
    functionSq.dat.data[:] = function.dat.data[:]**2
    
    firstTerm = Function(V_vec)
    firstTerm.dat.data[:,0] = function.dat.data[:]*nablaMinusOneFunction.dat.data[:,0]
    firstTerm.dat.data[:,1] = function.dat.data[:]*nablaMinusOneFunction.dat.data[:,1]
    
    secondTerm = calcDivMinus1ofScalar(calcCdotOfVectors(GradFunction, nablaMinusOneFunction)) 
    
    thirdTerm = calcDivMinus1ofScalar(functionSq)
    
    result = Function(V_vec)
    result.dat.data[:] = firstTerm.dat.data[:]-secondTerm.dat.data[:]-thirdTerm.dat.data[:]
    
    normalisationFactor = abs(sqrt(L_x*L_y))/(norm(result,"l2"))    
    result.dat.data[:] = adv_scale*normalisationFactor * result.dat.data[:] 
    return result 
### Variational scheme
###

# Defining displacement space
V = VectorFunctionSpace(mesh, finiteElement.family, finiteElement.order)
# Stresss space
S = TensorFunctionSpace(mesh, finiteElement.family, finiteElement.order)

# Trial and test functions
uTrial = TrialFunction(V)
w = TestFunction(V)

# weak operators
massOp = physics.rho * inner(uTrial, w) * dx
stiffOp = inner(elasticity.stress(physics.mu, physics.lmbda, uTrial),
                grad(w)) * dx
# basisOp = [ inner(psi, w)*ds(i) for psi in psiBasis for i in range(geo.getNoFaces()) ]
basisOp = [inner(psi, w) * ds(1) for psi in psiBasis]

## Matrices and vectors
#M = PETScMatrix()
#R = PETScMatrix()
#P = [ PETScVector() for i in range(len(basisOp)) ]

## Assembling
#assemble(massOp, tensor=M)
#assemble(stiffOp, tensor=R)
#[ assemble(basisOp[i], tensor=P[i]) for i in range(len(P)) ]

# Assembling
M = assemble(massOp)
Esempio n. 10
0
###
### Variational scheme
###

# Defining displacement space
V = VectorFunctionSpace(mesh, finiteElement.family, finiteElement.order)
# Stresss space
S = TensorFunctionSpace(mesh, finiteElement.family, finiteElement.order)

# Trial and test functions
uTrial = TrialFunction(V)
w = TestFunction(V)

# weak operators
massOp = physics.rho*inner(uTrial, w)*dx
stiffOp = inner(elasticity.stress(physics.mu, physics.lmbda, uTrial), grad(w))*dx

# Assembling
M = assemble(massOp)
R = assemble(stiffOp)

## Create zero boundary condition
#bc = DirichletBC(V, Constant(geo.nDim*[0.0]), dirichletSubdomain)

## Construct dirichlet contribution vectors
#dirichletM = PETScVector(MPI_COMM_WORLD, M.size(0))
#bc.zero(M)
#bc.zero_columns(M, dirichletM, 1)
#dirichletR = PETScVector(MPI_COMM_WORLD, R.size(0))
#bc.zero(R)
#bc.zero_columns(R, dirichletR, 1)
Esempio n. 11
0
def stress(mu, lmbda, u):
    Eps = sym(grad(u))
    return 2.0 * mu * Eps + lmbda * tr(Eps) * Identity(len(u))
def calcDivMinus1ofScalar(function):
    # div^{-1} = div^{-1} divgrad laplace^{-1} = grad laplace^{-1}
    return project(grad(calcInverseLaplacian(function)),V_vec)
def calcLaplacian(function):
    gradFunction = project(grad(function), V_vec)
    return project(div(gradFunction),V)
    
    
    testFunctionA, testFunctionB = TestFunctions(W)
    
adv_scale
#################################


#################################



##### pde #####

F_nonLin = (inner((theta - theta_old)/timestep, testFunctionA)
    + 1/2*inner(dot(grad(theta),grad(theta)), testFunctionA) 
    - inner(inner(cFunktion,theta), testFunctionA)
    )*dx
    
F_onlyAdv = (inner((theta - theta_old)/timestep, testFunctionA)
    + inner(dot(u_adv,grad(theta)), testFunctionA)
    - inner(inner(cFunktion,theta), testFunctionA)
    )*dx

F_advLap = (inner((theta - theta_old)/timestep, testFunctionA)
    + inner(dot(u_adv,grad(theta)), testFunctionA) 
    + kappa * inner(grad(theta), grad(testFunctionA))
    - inner(inner(cFunktion,theta), testFunctionA)
    )*dx

if numberTestFunctions == 2: