Esempio n. 1
0
    def to_reference_coordinates(ufl_coordinate_element):
        # Set up UFL form
        cell = ufl_coordinate_element.cell()
        domain = ufl.Mesh(ufl_coordinate_element)
        K = ufl.JacobianInverse(domain)
        x = ufl.SpatialCoordinate(domain)
        x0_element = ufl.VectorElement("Real", cell, 0)
        x0 = ufl.Coefficient(ufl.FunctionSpace(domain, x0_element))
        expr = ufl.dot(K, x - x0)

        # Translation to GEM
        C = ufl.Coefficient(ufl.FunctionSpace(domain, ufl_coordinate_element))
        expr = ufl_utils.preprocess_expression(expr)
        expr = ufl_utils.simplify_abs(expr)

        builder = firedrake_interface.KernelBuilderBase()
        builder.domain_coordinate[domain] = C
        builder._coefficient(C, "C")
        builder._coefficient(x0, "x0")

        dim = cell.topological_dimension()
        point = gem.Variable('X', (dim,))
        context = tsfc.fem.GemPointContext(
            interface=builder,
            ufl_cell=cell,
            precision=parameters["precision"],
            point_indices=(),
            point_expr=point,
        )
        translator = tsfc.fem.Translator(context)
        ir = map_expr_dag(translator, expr)

        # Unroll result
        ir = [gem.Indexed(ir, alpha) for alpha in numpy.ndindex(ir.shape)]

        # Unroll IndexSums
        max_extent = parameters["unroll_indexsum"]
        if max_extent:
            def predicate(index):
                return index.extent <= max_extent
            ir = gem.optimise.unroll_indexsum(ir, predicate=predicate)

        # Translate to COFFEE
        ir = impero_utils.preprocess_gem(ir)
        return_variable = gem.Variable('dX', (dim,))
        assignments = [(gem.Indexed(return_variable, (i,)), e)
                       for i, e in enumerate(ir)]
        impero_c = impero_utils.compile_gem(assignments, ())
        body = tsfc.coffee.generate(impero_c, {}, parameters["precision"])
        body.open_scope = False

        return body
Esempio n. 2
0
 def __init__(self, mesh, element, name):
     self._ufl_function_space = ufl.FunctionSpace(mesh.ufl_mesh(), element)
     self.name = name
     self.comm = mesh.comm
     self._mesh = mesh
     self.dof_dset = op2.GlobalDataSet(self.make_dat())
     self.node_set = self.dof_dset.set
Esempio n. 3
0
    def __init__(self, mesh):
        """
        Create function that evaluates to the facet area/length on each facet.

        *Arguments*
            mesh
                a :py:class:`Mesh <dolfin.cpp.Mesh>`.

        *Example of usage*

            .. code-block:: python

                mesh = UnitSquare(4,4)
                fa = FacetArea(mesh)

        """

        # Handle MultiMesh
        if isinstance(mesh, cpp.MultiMesh):
            mesh = mesh.part(0)

        # Initialize C++ part
        cpp.FacetArea.__init__(self, mesh)

        # Initialize UFL part
        # NB! This is defined as a piecewise constant function for each cell, not for each facet!
        ufl_element = ufl.FiniteElement("Discontinuous Lagrange", mesh.ufl_cell(), 0)
        ufl_function_space = ufl.FunctionSpace(mesh.ufl_domain(), ufl_element)
        ufl.Coefficient.__init__(self, ufl_function_space, count=self.id())
Esempio n. 4
0
    def __init__(self,
                 cell=None,
                 element=None,
                 domain=None,
                 name=None,
                 label=None):

        # Some messy cell/domain handling for compatibility, will be
        # straightened out later
        if domain is None:
            ufl_domain = None
        else:
            if isinstance(domain, ufl.domain.AbstractDomain):
                ufl_domain = domain
            else:
                # Probably getting a Mesh here, from existing dolfin
                # tests. Will be the same later anyway.
                ufl_domain = domain.ufl_domain()

            if cell is None:
                cell = ufl_domain.ufl_cell()

        # Initialise base class
        ufl_function_space = ufl.FunctionSpace(ufl_domain, element)
        ufl.Coefficient.__init__(self, ufl_function_space, count=self.id())

        name = name or "f_" + str(ufl.Coefficient.count(self))
        label = label or "User defined expression"
        self._cpp_object.rename(name, label)
Esempio n. 5
0
def test_custom_quadrature(compile_args):
    ve = ufl.VectorElement("P", "triangle", 1)
    mesh = ufl.Mesh(ve)

    e = ufl.FiniteElement("P", mesh.ufl_cell(), 2)
    V = ufl.FunctionSpace(mesh, e)
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    points = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.5, 0.5], [0.0, 0.5], [0.5, 0.0]]
    weights = [1 / 12] * 6
    a = u * v * ufl.dx(metadata={"quadrature_rule": "custom",
                                 "quadrature_points": points, "quadrature_weights": weights})

    forms = [a]
    compiled_forms, module = ffcx.codegeneration.jit.compile_forms(forms, cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    form = compiled_forms[0][0]
    default_integral = form.create_cell_integral(-1)

    A = np.zeros((6, 6), dtype=np.float64)
    w = np.array([], dtype=np.float64)
    c = np.array([], dtype=np.float64)

    coords = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 1.0], dtype=np.float64)
    default_integral.tabulate_tensor(
        ffi.cast("double *", A.ctypes.data),
        ffi.cast("double *", w.ctypes.data),
        ffi.cast("double *", c.ctypes.data),
        ffi.cast("double *", coords.ctypes.data), ffi.NULL, ffi.NULL, 0)

    # Check that A is diagonal
    assert np.count_nonzero(A - np.diag(np.diagonal(A))) == 0
Esempio n. 6
0
    def __init__(self, value, cell=None, name=None):
        """
        Create constant-valued function with given value.

        *Arguments*
            value
                The value may be either a single scalar value, or a
                tuple/list of values for vector-valued functions, or
                nested lists or a numpy array for tensor-valued
                functions.
            cell
                Optional argument. A :py:class:`Cell
                <ufl.Cell>` which defines the geometrical
                dimensions the Constant is defined for.
            name
                Optional argument. A str which overrules the default
                name of the Constant.

        The data type Constant represents a constant value that is
        unknown at compile-time. Its values can thus be changed
        without requiring re-generation and re-compilation of C++
        code.

        *Examples of usage*

            .. code-block:: python

                p = Constant(pi/4)              # scalar
                C = Constant((0.0, -1.0, 0.0))  # constant vector

        """

        # TODO: Either take mesh instead of cell, or drop cell and let
        # grad(c) be undefined.
        if cell is not None:
            cell = ufl.as_cell(cell)
        ufl_domain = None

        array = numpy.array(value)
        rank = len(array.shape)
        floats = list(map(float, array.flat))

        # Create UFL element and initialize constant
        if rank == 0:
            ufl_element = ufl.FiniteElement("Real", cell, 0)
            cpp.Constant.__init__(self, floats[0])
        elif rank == 1:
            ufl_element = ufl.VectorElement("Real", cell, 0, dim=len(floats))
            cpp.Constant.__init__(self, floats)
        else:
            ufl_element = ufl.TensorElement("Real", cell, 0, shape=array.shape)
            cpp.Constant.__init__(self, list(array.shape), floats)

        # Initialize base classes
        ufl_function_space = ufl.FunctionSpace(ufl_domain, ufl_element)
        ufl.Coefficient.__init__(self, ufl_function_space, count=self.id())

        # Set name as given or automatic
        name = name or "f_%d" % self.count()
        self.rename(name, "a Constant")
Esempio n. 7
0
    def __init__(self, mesh, element, name=None, real_tensorproduct=False):
        super(FunctionSpace, self).__init__()
        if type(element) is ufl.MixedElement:
            raise ValueError("Can't create FunctionSpace for MixedElement")
        finat_element = create_element(element)
        if isinstance(finat_element, finat.TensorFiniteElement):
            # Retrieve scalar element
            finat_element = finat_element.base_element
        # Used for reconstruction of mixed/component spaces
        self.real_tensorproduct = real_tensorproduct
        sdata = get_shared_data(mesh,
                                finat_element,
                                real_tensorproduct=real_tensorproduct)
        # The function space shape is the number of dofs per node,
        # hence it is not always the value_shape.  Vector and Tensor
        # element modifiers *must* live on the outside!
        if type(element) is ufl.TensorElement:
            # UFL enforces value_shape of the subelement to be empty
            # on a TensorElement.
            self.shape = element.value_shape()
        elif type(element) is ufl.VectorElement:
            # First dimension of the value_shape is the VectorElement
            # shape.
            self.shape = element.value_shape()[:1]
        else:
            self.shape = ()
        self._ufl_function_space = ufl.FunctionSpace(mesh.ufl_mesh(), element)
        self._shared_data = sdata
        self._mesh = mesh

        self.rank = len(self.shape)
        r"""The rank of this :class:`FunctionSpace`.  Spaces where the
        element is scalar-valued (or intrinsically vector-valued) have
        rank zero.  Spaces built on :class:`~ufl.classes.VectorElement` or
        :class:`~ufl.classes.TensorElement` instances have rank equivalent to
        the number of components of their
        :meth:`~ufl.classes.FiniteElementBase.value_shape`."""

        self.value_size = int(numpy.prod(self.shape, dtype=int))
        r"""The total number of degrees of freedom at each function
        space node."""
        self.name = name
        r"""The (optional) descriptive name for this space."""
        self.node_set = sdata.node_set
        r"""A :class:`pyop2.Set` representing the function space nodes."""
        self.dof_dset = op2.DataSet(self.node_set,
                                    self.shape or 1,
                                    name="%s_nodes_dset" % self.name)
        r"""A :class:`pyop2.DataSet` representing the function space
        degrees of freedom."""

        self.comm = self.node_set.comm
        self.finat_element = finat_element
        self.extruded = sdata.extruded
        self.offset = sdata.offset
        self.cell_boundary_masks = sdata.cell_boundary_masks
        self.interior_facet_boundary_masks = sdata.interior_facet_boundary_masks
Esempio n. 8
0
    def set_coordinates(self, domain):
        """Prepare the coordinate field.

        :arg domain: :class:`ufl.Domain`
        """
        # Create a fake coordinate coefficient for a domain.
        f = ufl.Coefficient(ufl.FunctionSpace(domain, domain.ufl_coordinate_element()))
        self.domain_coordinate[domain] = f
        self.coordinates_arg = self._coefficient(f, "macro_coords")
Esempio n. 9
0
def test_matvec(compile_args):
    """Test evaluation of linear rank-0 form.

    Evaluates expression c * A_ij * f_j where c is a Constant,
    A_ij is a user specified constant matrix and f_j is j-th component
    of user specified vector-valued finite element function (in P1 space).

    """
    e = ufl.VectorElement("P", "triangle", 1)
    mesh = ufl.Mesh(e)
    V = ufl.FunctionSpace(mesh, e)
    f = ufl.Coefficient(V)

    a_mat = np.array([[1.0, 2.0], [1.0, 1.0]])
    a = ufl.as_matrix(a_mat)
    expr = ufl.Constant(mesh) * ufl.dot(a, f)

    points = np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]])
    obj, module = ffcx.codegeneration.jit.compile_expressions(
        [(expr, points)], cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    kernel = obj[0][0]

    c_type, np_type = float_to_type("double")

    A = np.zeros((3, 2), dtype=np_type)
    f_mat = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

    # Coefficient storage XYXYXY
    w = np.array(f_mat.T.flatten(), dtype=np_type)
    c = np.array([0.5], dtype=np_type)

    # Coords storage XYXYXY
    coords = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 1.0], dtype=np.float64)
    kernel.tabulate_expression(
        ffi.cast('{type} *'.format(type=c_type), A.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast('double *', coords.ctypes.data))

    # Check the computation against correct NumPy value
    assert np.allclose(A, 0.5 * np.dot(a_mat, f_mat).T)

    # Prepare NumPy array of points attached to the expression
    length = kernel.num_points * kernel.topological_dimension
    points_kernel = np.frombuffer(
        ffi.buffer(kernel.points, length * ffi.sizeof("double")), np.double)
    points_kernel = points_kernel.reshape(points.shape)
    assert np.allclose(points, points_kernel)

    # Check the value shape attached to the expression
    value_shape = np.frombuffer(
        ffi.buffer(kernel.value_shape,
                   kernel.num_components * ffi.sizeof("int")), np.intc)
    assert np.allclose(expr.ufl_shape, value_shape)
Esempio n. 10
0
def test_ufl_only_spatialcoordinate():
    mesh = ufl.Mesh(ufl.VectorElement("P", ufl.triangle, 1))
    V = ufl.FunctionSpace(mesh, ufl.FiniteElement("P", ufl.triangle, 2))
    x, y = ufl.SpatialCoordinate(mesh)
    expr = x * y - y**2 + x
    W = V
    to_element = create_element(W.ufl_element())
    ast, oriented, needs_cell_sizes, coefficients, first_coeff_fake_coords, *_ = compile_expression_dual_evaluation(
        expr, to_element, coffee=False)
    assert first_coeff_fake_coords is True
Esempio n. 11
0
def test_ufl_only_simple():
    mesh = ufl.Mesh(ufl.VectorElement("P", ufl.triangle, 1))
    V = ufl.FunctionSpace(mesh, ufl.FiniteElement("P", ufl.triangle, 2))
    v = ufl.Coefficient(V)
    expr = ufl.inner(v, v)
    W = V
    to_element = create_element(W.ufl_element())
    ast, oriented, needs_cell_sizes, coefficients, first_coeff_fake_coords, *_ = compile_expression_dual_evaluation(
        expr, to_element, coffee=False)
    assert first_coeff_fake_coords is False
Esempio n. 12
0
def test_rank1(compile_args):
    """Tests evaluation of rank-1 form.

    Builds a linear operator which takes vector-valued functions in P1 space
    and evaluates expression [u_y, u_x] + grad(u_x) at specified points.

    """
    e = ufl.VectorElement("P", "triangle", 1)
    mesh = ufl.Mesh(e)

    V = ufl.FunctionSpace(mesh, e)
    u = ufl.TrialFunction(V)

    expr = ufl.as_vector([u[1], u[0]]) + ufl.grad(u[0])

    points = np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]])
    obj, module = ffcx.codegeneration.jit.compile_expressions(
        [(expr, points)], cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    kernel = obj[0][0]

    c_type, np_type = float_to_type("double")

    # 2 components for vector components of expression
    # 3 points of evaluation
    # 6 degrees of freedom for rank1 form
    A = np.zeros((3, 2, 6), dtype=np_type)

    # Coefficient storage XYXYXY
    w = np.array([0.0], dtype=np_type)
    c = np.array([0.0], dtype=np_type)

    # Coords storage XYXYXY
    coords = np.array(points.flatten(), dtype=np.float64)
    kernel.tabulate_expression(
        ffi.cast('{type} *'.format(type=c_type), A.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast('double *', coords.ctypes.data))

    f = np.array([[1.0, 2.0, 3.0], [-4.0, -5.0, 6.0]])

    # Apply the operator on some test input data
    u_ffcx = np.einsum("ijk,k", A, f.T.flatten())

    # Compute the correct values using NumPy
    # Gradf0 is gradient of f[0], each component of the gradient is constant
    gradf0 = np.array(
        [[f[0, 1] - f[0, 0], f[0, 1] - f[0, 0], f[0, 1] - f[0, 0]],
         [f[0, 2] - f[0, 0], f[0, 2] - f[0, 0], f[0, 2] - f[0, 0]]])

    u_correct = np.array([f[1], f[0]]) + gradf0

    assert np.allclose(u_ffcx, u_correct.T)
Esempio n. 13
0
    def __init__(self, mesh, element, name=None):
        super(FunctionSpace, self).__init__()
        if type(element) is ufl.MixedElement:
            raise ValueError("Can't create FunctionSpace for MixedElement")
        sdata = get_shared_data(mesh, element)
        # The function space shape is the number of dofs per node,
        # hence it is not always the value_shape.  Vector and Tensor
        # element modifiers *must* live on the outside!
        if type(element) in {ufl.TensorElement, ufl.VectorElement}:
            # The number of "free" dofs is given by reference_value_shape,
            # not value_shape due to symmetry specifications
            rvs = element.reference_value_shape()
            # This requires that the sub element is not itself a
            # tensor element (which is checked by the top level
            # constructor of function spaces)
            sub = element.sub_elements()[0].value_shape()
            self.shape = rvs[:len(rvs) - len(sub)]
        else:
            self.shape = ()
        self._ufl_function_space = ufl.FunctionSpace(mesh.ufl_mesh(), element)
        self._shared_data = sdata
        self._mesh = mesh

        self.rank = len(self.shape)
        r"""The rank of this :class:`FunctionSpace`.  Spaces where the
        element is scalar-valued (or intrinsically vector-valued) have
        rank zero.  Spaces built on :class:`~ufl.classes.VectorElement` or
        :class:`~ufl.classes.TensorElement` instances have rank equivalent to
        the number of components of their
        :meth:`~ufl.classes.FiniteElementBase.value_shape`."""

        self.value_size = int(numpy.prod(self.shape, dtype=int))
        r"""The total number of degrees of freedom at each function
        space node."""
        self.name = name
        r"""The (optional) descriptive name for this space."""
        self.node_set = sdata.node_set
        r"""A :class:`pyop2.Set` representing the function space nodes."""
        self.dof_dset = op2.DataSet(self.node_set,
                                    self.shape or 1,
                                    name="%s_nodes_dset" % self.name)
        r"""A :class:`pyop2.DataSet` representing the function space
        degrees of freedom."""

        self.comm = self.node_set.comm
        # Need to create finat element again as sdata does not
        # want to carry finat_element.
        self.finat_element = create_element(element)
        # Used for reconstruction of mixed/component spaces.
        # sdata carries real_tensorproduct.
        self.real_tensorproduct = sdata.real_tensorproduct
        self.extruded = sdata.extruded
        self.offset = sdata.offset
        self.cell_boundary_masks = sdata.cell_boundary_masks
        self.interior_facet_boundary_masks = sdata.interior_facet_boundary_masks
Esempio n. 14
0
    def set_coordinates(self, domain):
        """Prepare the coordinate field.

        :arg domain: :class:`ufl.Domain`
        """
        # Create a fake coordinate coefficient for a domain.
        f = ufl.Coefficient(ufl.FunctionSpace(domain, domain.ufl_coordinate_element()))
        self.domain_coordinate[domain] = f
        self.coordinates_args, expression = prepare_coordinates(
            f, "coordinate_dofs", interior_facet=self.interior_facet)
        self.coefficient_map[f] = expression
Esempio n. 15
0
 def __init__(self, spaces, name=None):
     super(MixedFunctionSpace, self).__init__()
     self._spaces = tuple(IndexedFunctionSpace(i, s, self)
                          for i, s in enumerate(spaces))
     mesh, = set(s.mesh() for s in spaces)
     self._ufl_function_space = ufl.FunctionSpace(mesh.ufl_mesh(),
                                                  ufl.MixedElement(*[s.ufl_element() for s in spaces]))
     self.name = name or "_".join(str(s.name) for s in spaces)
     self._subspaces = {}
     self._mesh = mesh
     self.comm = self.node_set.comm
Esempio n. 16
0
def test_ufl_only_shape_mismatch():
    mesh = ufl.Mesh(ufl.VectorElement("P", ufl.triangle, 1))
    V = ufl.FunctionSpace(mesh, ufl.FiniteElement("RT", ufl.triangle, 1))
    v = ufl.Coefficient(V)
    expr = ufl.inner(v, v)
    assert expr.ufl_shape == ()
    W = V
    to_element = create_element(W.ufl_element())
    assert to_element.value_shape == (2, )
    with pytest.raises(ValueError):
        ast, oriented, needs_cell_sizes, coefficients, first_coeff_fake_coords, *_ = compile_expression_dual_evaluation(
            expr, to_element, coffee=False)
Esempio n. 17
0
    def __init__(self, mesh):
        "Create function that evaluates to the mesh coordinates at each vertex."
        # Initialize C++ part
        cpp.MeshCoordinates.__init__(self, mesh)

        # Initialize UFL part
        ufl_element = mesh.ufl_domain().ufl_coordinate_element()
        if ufl_element.family() != "Lagrange" or ufl_element.degree() != 1:
            cpp.dolfin_error("specialfunctions.py",
                             "initialize MeshCoordinates",
                             "dolfin::MeshCoordinates only supports affine meshes")
        ufl_function_space = ufl.FunctionSpace(mesh.ufl_domain(), ufl_element)
        ufl.Coefficient.__init__(self, ufl_function_space, count=self.id())
Esempio n. 18
0
def test_estimated_degree():
    cell = ufl.tetrahedron
    mesh = ufl.Mesh(ufl.VectorElement('P', cell, 1))
    V = ufl.FunctionSpace(mesh, ufl.FiniteElement('P', cell, 1))
    f = ufl.Coefficient(V)
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = u * v * ufl.tanh(ufl.sqrt(ufl.sinh(f) / ufl.sin(f**f))) * ufl.dx

    handler = MockHandler()
    logger.addHandler(handler)
    with pytest.raises(RuntimeError):
        compile_form(a)
    logger.removeHandler(handler)
Esempio n. 19
0
    def __init__(self, value):

        self.dat, rank, shape = _globalify(value)

        cell = None
        domain = None
        if rank == 0:
            e = ufl.FiniteElement("Real", cell, 0)
        elif rank == 1:
            e = ufl.VectorElement("Real", cell, 0, shape[0])
        elif rank == 2:
            e = ufl.TensorElement("Real", cell, 0, shape=shape)

        fs = ufl.FunctionSpace(domain, e)
        super(Constant, self).__init__(fs)
        self._repr = 'Constant(%r, %r)' % (self.ufl_element(), self.count())
Esempio n. 20
0
    def __init__(self, value, domain=None):
        # Init also called in mesh constructor, but constant can be built without mesh
        utils._init()
        self.dat, rank, shape = _globalify(value)

        cell = None
        if domain is not None:
            domain = ufl.as_domain(domain)
            cell = domain.ufl_cell()
        if rank == 0:
            e = ufl.FiniteElement("Real", cell, 0)
        elif rank == 1:
            e = ufl.VectorElement("Real", cell, 0, shape[0])
        elif rank == 2:
            e = ufl.TensorElement("Real", cell, 0, shape=shape)

        fs = ufl.FunctionSpace(domain, e)
        super(Constant, self).__init__(fs)
        self._repr = 'Constant(%r, %r)' % (self.ufl_element(), self.count())
Esempio n. 21
0
    def __init__(self, value, cell, name=None, symmetry=None):

        cell = ufl.as_cell(cell)
        ufl_domain = None

        array = numpy.array(value)
        rank = len(array.shape)
        floats = list(map(float, array.flat))

        assert rank == 2

        ufl_element = ufl.TensorElement("Real",
                                        cell,
                                        0,
                                        shape=array.shape,
                                        symmetry=symmetry)
        cpp.Constant.__init__(self, list(array.shape), floats)

        ufl_function_space = ufl.FunctionSpace(ufl_domain, ufl_element)
        ufl.Coefficient.__init__(self, ufl_function_space, count=self.id())

        name = name or "f_%d" % self.count()
        self.rename(name, "a Constant")
Esempio n. 22
0
def V(request, mesh):
    return ufl.FunctionSpace(mesh, request.param("CG", mesh.ufl_cell(), 2))
Esempio n. 23
0
def compile_expression_dual_evaluation(expression,
                                       to_element,
                                       *,
                                       domain=None,
                                       interface=None,
                                       parameters=None,
                                       coffee=False):
    """Compile a UFL expression to be evaluated against a compile-time known reference element's dual basis.

    Useful for interpolating UFL expressions into e.g. N1curl spaces.

    :arg expression: UFL expression
    :arg to_element: A FInAT element for the target space
    :arg domain: optional UFL domain the expression is defined on (required when expression contains no domain).
    :arg interface: backend module for the kernel interface
    :arg parameters: parameters object
    :arg coffee: compile coffee kernel instead of loopy kernel
    """
    import coffee.base as ast
    import loopy as lp

    # Just convert FInAT element to FIAT for now.
    # Dual evaluation in FInAT will bring a thorough revision.
    to_element = to_element.fiat_equivalent

    if any(len(dual.deriv_dict) != 0 for dual in to_element.dual_basis()):
        raise NotImplementedError(
            "Can only interpolate onto dual basis functionals without derivative evaluation, sorry!"
        )

    if parameters is None:
        parameters = default_parameters()
    else:
        _ = default_parameters()
        _.update(parameters)
        parameters = _

    # Determine whether in complex mode
    complex_mode = is_complex(parameters["scalar_type"])

    # Find out which mapping to apply
    try:
        mapping, = set(to_element.mapping())
    except ValueError:
        raise NotImplementedError(
            "Don't know how to interpolate onto zany spaces, sorry")
    expression = apply_mapping(expression, mapping, domain)

    # Apply UFL preprocessing
    expression = ufl_utils.preprocess_expression(expression,
                                                 complex_mode=complex_mode)

    # Initialise kernel builder
    if interface is None:
        if coffee:
            import tsfc.kernel_interface.firedrake as firedrake_interface_coffee
            interface = firedrake_interface_coffee.ExpressionKernelBuilder
        else:
            # Delayed import, loopy is a runtime dependency
            import tsfc.kernel_interface.firedrake_loopy as firedrake_interface_loopy
            interface = firedrake_interface_loopy.ExpressionKernelBuilder

    builder = interface(parameters["scalar_type"])
    arguments = extract_arguments(expression)
    argument_multiindices = tuple(
        builder.create_element(arg.ufl_element()).get_indices()
        for arg in arguments)

    # Replace coordinates (if any) unless otherwise specified by kwarg
    if domain is None:
        domain = expression.ufl_domain()
    assert domain is not None

    # Collect required coefficients
    first_coefficient_fake_coords = False
    coefficients = extract_coefficients(expression)
    if has_type(expression, GeometricQuantity) or any(
            fem.needs_coordinate_mapping(c.ufl_element())
            for c in coefficients):
        # Create a fake coordinate coefficient for a domain.
        coords_coefficient = ufl.Coefficient(
            ufl.FunctionSpace(domain, domain.ufl_coordinate_element()))
        builder.domain_coordinate[domain] = coords_coefficient
        builder.set_cell_sizes(domain)
        coefficients = [coords_coefficient] + coefficients
        first_coefficient_fake_coords = True
    builder.set_coefficients(coefficients)

    # Split mixed coefficients
    expression = ufl_utils.split_coefficients(expression,
                                              builder.coefficient_split)

    # Translate to GEM
    kernel_cfg = dict(
        interface=builder,
        ufl_cell=domain.ufl_cell(),
        # FIXME: change if we ever implement
        # interpolation on facets.
        integral_type="cell",
        argument_multiindices=argument_multiindices,
        index_cache={},
        scalar_type=parameters["scalar_type"])

    if all(
            isinstance(dual, PointEvaluation)
            for dual in to_element.dual_basis()):
        # This is an optimisation for point-evaluation nodes which
        # should go away once FInAT offers the interface properly
        qpoints = []
        # Everything is just a point evaluation.
        for dual in to_element.dual_basis():
            ptdict = dual.get_point_dict()
            qpoint, = ptdict.keys()
            (qweight, component), = ptdict[qpoint]
            assert allclose(qweight, 1.0)
            assert component == ()
            qpoints.append(qpoint)
        point_set = PointSet(qpoints)
        config = kernel_cfg.copy()
        config.update(point_set=point_set)

        # Allow interpolation onto QuadratureElements to refer to the quadrature
        # rule they represent
        if isinstance(to_element, FIAT.QuadratureElement):
            assert allclose(asarray(qpoints), asarray(to_element._points))
            quad_rule = QuadratureRule(point_set, to_element._weights)
            config["quadrature_rule"] = quad_rule

        expr, = fem.compile_ufl(expression, **config, point_sum=False)
        # In some cases point_set.indices may be dropped from expr, but nothing
        # new should now appear
        assert set(expr.free_indices) <= set(
            chain(point_set.indices, *argument_multiindices))
        shape_indices = tuple(gem.Index() for _ in expr.shape)
        basis_indices = point_set.indices
        ir = gem.Indexed(expr, shape_indices)
    else:
        # This is general code but is more unrolled than necssary.
        dual_expressions = []  # one for each functional
        broadcast_shape = len(expression.ufl_shape) - len(
            to_element.value_shape())
        shape_indices = tuple(gem.Index()
                              for _ in expression.ufl_shape[:broadcast_shape])
        expr_cache = {}  # Sharing of evaluation of the expression at points
        for dual in to_element.dual_basis():
            pts = tuple(sorted(dual.get_point_dict().keys()))
            try:
                expr, point_set = expr_cache[pts]
            except KeyError:
                point_set = PointSet(pts)
                config = kernel_cfg.copy()
                config.update(point_set=point_set)
                expr, = fem.compile_ufl(expression, **config, point_sum=False)
                # In some cases point_set.indices may be dropped from expr, but
                # nothing new should now appear
                assert set(expr.free_indices) <= set(
                    chain(point_set.indices, *argument_multiindices))
                expr = gem.partial_indexed(expr, shape_indices)
                expr_cache[pts] = expr, point_set
            weights = collections.defaultdict(list)
            for p in pts:
                for (w, cmp) in dual.get_point_dict()[p]:
                    weights[cmp].append(w)
            qexprs = gem.Zero()
            for cmp in sorted(weights):
                qweights = gem.Literal(weights[cmp])
                qexpr = gem.Indexed(expr, cmp)
                qexpr = gem.index_sum(
                    gem.Indexed(qweights, point_set.indices) * qexpr,
                    point_set.indices)
                qexprs = gem.Sum(qexprs, qexpr)
            assert qexprs.shape == ()
            assert set(qexprs.free_indices) == set(
                chain(shape_indices, *argument_multiindices))
            dual_expressions.append(qexprs)
        basis_indices = (gem.Index(), )
        ir = gem.Indexed(gem.ListTensor(dual_expressions), basis_indices)

    # Build kernel body
    return_indices = basis_indices + shape_indices + tuple(
        chain(*argument_multiindices))
    return_shape = tuple(i.extent for i in return_indices)
    return_var = gem.Variable('A', return_shape)
    if coffee:
        return_arg = ast.Decl(parameters["scalar_type"],
                              ast.Symbol('A', rank=return_shape))
    else:
        return_arg = lp.GlobalArg("A",
                                  dtype=parameters["scalar_type"],
                                  shape=return_shape)

    return_expr = gem.Indexed(return_var, return_indices)

    # TODO: one should apply some GEM optimisations as in assembly,
    # but we don't for now.
    ir, = impero_utils.preprocess_gem([ir])
    impero_c = impero_utils.compile_gem([(return_expr, ir)], return_indices)
    index_names = dict(
        (idx, "p%d" % i) for (i, idx) in enumerate(basis_indices))
    # Handle kernel interface requirements
    builder.register_requirements([ir])
    # Build kernel tuple
    return builder.construct_kernel(return_arg, impero_c, index_names,
                                    first_coefficient_fake_coords)
Esempio n. 24
0
 def ufl_function_space(self):
     from firedrake.ufl_expr import reconstruct_element
     return ufl.FunctionSpace(
         self._mesh,
         reconstruct_element(self._topological.ufl_element(),
                             cell=self._mesh.ufl_cell()))
Esempio n. 25
0
def coordinate_coefficient(domain):
    """Create a fake coordinate coefficient for a domain."""
    return ufl.Coefficient(ufl.FunctionSpace(domain, domain.ufl_coordinate_element()))
Esempio n. 26
0
File: run.py Progetto: miklos1/urumi
def holzapfel_ogden(mesh, q, p, nf=0):
    # Based on https://gist.github.com/meg-simula/3ab3fd63264c8cf1912b
    #
    # Original credit note:
    # "Original implementation by Gabriel Balaban,
    # modified by Marie E. Rognes"

    from ufl import (Constant, VectorConstant, Identity, Coefficient,
                     TestFunction, conditional, det, diff, dot, exp,
                     grad, inner, tr, variable)

    # Define some random parameters
    a = Constant(mesh)
    b = Constant(mesh)
    a_s = Constant(mesh)
    b_s = Constant(mesh)
    a_f = Constant(mesh)
    b_f = Constant(mesh)
    a_fs = Constant(mesh)
    b_fs = Constant(mesh)

    # For more fun, make these general vector fields rather than
    # constants:
    e_s = VectorConstant(mesh)
    e_f = VectorConstant(mesh)

    # Define the isochoric energy contribution
    def isochoric(C):
        I_1 = tr(C)
        I4_f = dot(e_f, C*e_f)
        I4_s = dot(e_s, C*e_s)
        I8_fs = dot(e_s, C*e_f)

        def heaviside(x):
            return conditional(x < 1, 0, 1)

        def scaled_exp(a, b, x):
            return a/(2*b)*(exp(b*x) - 1)

        E_1 = scaled_exp(a, b, I_1 - 3)

        E_f = heaviside(I4_f)*scaled_exp(a_f, b_f, (I4_f - 1)**2)
        E_s = heaviside(I4_s)*scaled_exp(a_s, b_s, (I4_s - 1)**2)
        E_3 = scaled_exp(a_fs, b_fs, I8_fs**2)

        E = E_1 + E_f + E_s + E_3
        return E

    # Define mesh and function space
    V = ufl.FunctionSpace(mesh, ufl.VectorElement("CG", mesh.ufl_cell(), q))
    u = Coefficient(V)
    v = TestFunction(V)

    # Misc elasticity related tensors and other quantities
    I = Identity(mesh.ufl_cell().topological_dimension())
    F = grad(u) + I
    F = variable(F)
    J = det(F)
    Cbar = J**(-2/3)*F.T*F

    # Define energy
    Psi = isochoric(Cbar)

    # Find first Piola-Kirchhoff tensor
    P = diff(Psi, F)

    # Define the variational formulation
    it = inner(P, grad(v))

    P = ufl.FunctionSpace(mesh, ufl.VectorElement('P', mesh.ufl_cell(), p))
    f = [ufl.Coefficient(P) for _ in range(nf)]
    return ufl.derivative(reduce(ufl.inner,
                                 list(map(ufl.div, f)) + [it])*ufl.dx, u)