Esempio n. 1
0
    def monolithic_solve():
        """Monolithic (interleaved) solver"""
        P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
        P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
        TH = P2_el * P1_el
        W = dolfinx.FunctionSpace(mesh, TH)
        (u, p) = ufl.TrialFunctions(W)
        (v, q) = ufl.TestFunctions(W)
        a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        a01 = ufl.inner(p, ufl.div(v)) * dx
        a10 = ufl.inner(ufl.div(u), q) * dx
        a = a00 + a01 + a10

        p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        p11 = ufl.inner(p, q) * dx
        p_form = p00 + p11

        f = dolfinx.Function(W.sub(0).collapse())
        p_zero = dolfinx.Function(W.sub(1).collapse())
        L0 = inner(f, v) * dx
        L1 = inner(p_zero, q) * dx
        L = L0 + L1

        bdofsW0_P2_0 = dolfinx.fem.locate_dofs_topological(
            (W.sub(0), P2), facetdim, bndry_facets0)
        bdofsW0_P2_1 = dolfinx.fem.locate_dofs_topological(
            (W.sub(0), P2), facetdim, bndry_facets1)

        bc0 = dolfinx.DirichletBC(u0, bdofsW0_P2_0, W.sub(0))
        bc1 = dolfinx.DirichletBC(u0, bdofsW0_P2_1, W.sub(0))

        A = dolfinx.fem.assemble_matrix(a, [bc0, bc1])
        A.assemble()
        P = dolfinx.fem.assemble_matrix(p_form, [bc0, bc1])
        P.assemble()

        b = dolfinx.fem.assemble_vector(L)
        dolfinx.fem.apply_lifting(b, [a], [[bc0, bc1]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        dolfinx.fem.set_bc(b, [bc0, bc1])

        ksp = PETSc.KSP()
        ksp.create(mesh.mpi_comm())
        ksp.setOperators(A, P)
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType('lu')

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = A.createVecRight()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), A.norm(), P.norm()
Esempio n. 2
0
def computeVelocityField(mesh):
    Xh = dl.VectorFunctionSpace(mesh,'Lagrange', 2)
    Wh = dl.FunctionSpace(mesh, 'Lagrange', 1)

    mixed_element = dl.MixedElement([Xh.ufl_element(), Wh.ufl_element()])
    XW = dl.FunctionSpace(mesh, mixed_element)

    
    Re = 1e2
    
    g = dl.Expression(('0.0','(x[0] < 1e-14) - (x[0] > 1 - 1e-14)'), element=Xh.ufl_element())
    bc1 = dl.DirichletBC(XW.sub(0), g, v_boundary)
    bc2 = dl.DirichletBC(XW.sub(1), dl.Constant(0), q_boundary, 'pointwise')
    bcs = [bc1, bc2]
    
    vq = dl.Function(XW)
    (v,q) = ufl.split(vq)
    (v_test, q_test) = dl.TestFunctions (XW)
    
    def strain(v):
        return ufl.sym(ufl.grad(v))
    
    F = ( (2./Re)*ufl.inner(strain(v),strain(v_test))+ ufl.inner (ufl.nabla_grad(v)*v, v_test)
           - (q * ufl.div(v_test)) + ( ufl.div(v) * q_test) ) * ufl.dx
           
    dl.solve(F == 0, vq, bcs, solver_parameters={"newton_solver":
                                         {"relative_tolerance":1e-4, "maximum_iterations":100,
                                          "linear_solver":"default"}})
        
    return v
Esempio n. 3
0
File: norms.py Progetto: dham/themis
def norm(v, norm_type="L2", degree=None):
    """Compute the norm of ``v``.

	:arg v: a ufl expression (:class:`~.ufl.classes.Expr`) to compute the norm of
	:arg norm_type: the type of norm to compute, see below for
		 options.

	Available norm types are:

	* L2

	   .. math::

		  ||v||_{L^2}^2 = \int (v, v) \mathrm{d}x

	* H1

	   .. math::

		  ||v||_{H^1}^2 = \int (v, v) + (\\nabla v, \\nabla v) \mathrm{d}x

	* Hdiv

	   .. math::

		  ||v||_{H_\mathrm{div}}^2 = \int (v, v) + (\\nabla\cdot v, \\nabla \cdot v) \mathrm{d}x

	* Hcurl

	   .. math::

		  ||v||_{H_\mathrm{curl}}^2 = \int (v, v) + (\\nabla \wedge v, \\nabla \wedge v) \mathrm{d}x
	"""

    if not degree == None:
        dxn = dx(2 * degree + 1)
    else:
        dxn = dx
    typ = norm_type.lower()
    if typ == 'l2':
        form = inner(v, v) * dxn
    elif typ == 'h1':
        form = inner(v, v) * dxn + inner(grad(v), grad(v)) * dxn
    elif typ == "hdiv":
        form = inner(v, v) * dxn + div(v) * div(v) * dxn
    elif typ == "hcurl":
        form = inner(v, v) * dxn + inner(curl(v), curl(v)) * dxn
    else:
        raise RuntimeError("Unknown norm type '%s'" % norm_type)

    normform = ZeroForm(form)
    return sqrt(normform.assembleform())
Esempio n. 4
0
def norm(v, norm_type="L2", mesh=None):
    """Compute the norm of ``v``.

    :arg v: a :class:`.Function` to compute the norm of
    :arg norm_type: the type of norm to compute, see below for
         options.
    :arg mesh: an optional mesh on which to compute the norm
         (currently ignored).

    Available norm types are:

    * L2

       .. math::

          ||v||_{L^2}^2 = \int (v, v) \mathrm{d}x

    * H1

       .. math::

          ||v||_{H^1}^2 = \int (v, v) + (\\nabla v, \\nabla v) \mathrm{d}x

    * Hdiv

       .. math::

          ||v||_{H_\mathrm{div}}^2 = \int (v, v) + (\\nabla\cdot v, \\nabla \cdot v) \mathrm{d}x

    * Hcurl

       .. math::

          ||v||_{H_\mathrm{curl}}^2 = \int (v, v) + (\\nabla \wedge v, \\nabla \wedge v) \mathrm{d}x
    """
    assert isinstance(v, function.Function)

    typ = norm_type.lower()
    mesh = v.function_space().mesh()
    dx = mesh._dx
    if typ == 'l2':
        form = inner(v, v)*dx
    elif typ == 'h1':
        form = inner(v, v)*dx + inner(grad(v), grad(v))*dx
    elif typ == "hdiv":
        form = inner(v, v)*dx + div(v)*div(v)*dx
    elif typ == "hcurl":
        form = inner(v, v)*dx + inner(curl(v), curl(v))*dx
    else:
        raise RuntimeError("Unknown norm type '%s'" % norm_type)

    return sqrt(solving.assemble(form))
Esempio n. 5
0
def norm(v, norm_type="L2", mesh=None):
    """Compute the norm of ``v``.

    :arg v: a :class:`.Function` to compute the norm of
    :arg norm_type: the type of norm to compute, see below for
         options.
    :arg mesh: an optional mesh on which to compute the norm
         (currently ignored).

    Available norm types are:

    * L2

       .. math::

          ||v||_{L^2}^2 = \int (v, v) \mathrm{d}x

    * H1

       .. math::

          ||v||_{H^1}^2 = \int (v, v) + (\\nabla v, \\nabla v) \mathrm{d}x

    * Hdiv

       .. math::

          ||v||_{H_\mathrm{div}}^2 = \int (v, v) + (\\nabla\cdot v, \\nabla \cdot v) \mathrm{d}x

    * Hcurl

       .. math::

          ||v||_{H_\mathrm{curl}}^2 = \int (v, v) + (\\nabla \wedge v, \\nabla \wedge v) \mathrm{d}x
    """
    assert isinstance(v, function.Function)

    typ = norm_type.lower()
    mesh = v.function_space().mesh()
    dx = mesh._dx
    if typ == 'l2':
        form = inner(v, v)*dx
    elif typ == 'h1':
        form = inner(v, v)*dx + inner(grad(v), grad(v))*dx
    elif typ == "hdiv":
        form = inner(v, v)*dx + div(v)*div(v)*dx
    elif typ == "hcurl":
        form = inner(v, v)*dx + inner(curl(v), curl(v))*dx
    else:
        raise RuntimeError("Unknown norm type '%s'" % norm_type)

    return sqrt(assemble(form))
Esempio n. 6
0
    def computeVelocityField(self):
        """
        The steady-state Navier-Stokes equation for velocity v:
        -1/Re laplace v + nabla q + v dot nabla v = 0  in Omega
        nabla dot v = 0                                in Omega
        v = g                                          on partial Omega
        """
        Xh = dl.VectorFunctionSpace(self.mesh, 'Lagrange', self.eldeg)
        Wh = dl.FunctionSpace(self.mesh, 'Lagrange', 1)

        mixed_element = dl.MixedElement([Xh.ufl_element(), Wh.ufl_element()])
        XW = dl.FunctionSpace(self.mesh, mixed_element)

        Re = dl.Constant(self.Re)

        def v_boundary(x, on_boundary):
            return on_boundary

        def q_boundary(x, on_boundary):
            return x[0] < dl.DOLFIN_EPS and x[1] < dl.DOLFIN_EPS

        g = dl.Expression(('0.0', '(x[0] < 1e-14) - (x[0] > 1 - 1e-14)'),
                          element=Xh.ufl_element())
        bc1 = dl.DirichletBC(XW.sub(0), g, v_boundary)
        bc2 = dl.DirichletBC(XW.sub(1), dl.Constant(0), q_boundary,
                             'pointwise')
        bcs = [bc1, bc2]

        vq = dl.Function(XW)
        (v, q) = ufl.split(vq)
        (v_test, q_test) = dl.TestFunctions(XW)

        def strain(v):
            return ufl.sym(ufl.grad(v))

        F = ((2. / Re) * ufl.inner(strain(v), strain(v_test)) +
             ufl.inner(ufl.nabla_grad(v) * v, v_test) - (q * ufl.div(v_test)) +
             (ufl.div(v) * q_test)) * ufl.dx

        dl.solve(F == 0,
                 vq,
                 bcs,
                 solver_parameters={
                     "newton_solver": {
                         "relative_tolerance": 1e-4,
                         "maximum_iterations": 100,
                         "linear_solver": "default"
                     }
                 })

        return v
Esempio n. 7
0
def r2_norm(v, func_degree=None, norm_type="L2", mesh=None):
    """
    This function is a modification of FEniCS's built-in norm function that adopts the :math:`r^2dr`
    measure as opposed to the standard Cartesian :math:`dx` measure.

    For documentation and usage, see the 
    original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/norms.py>_.

    .. note:: Note the extra argument func_degree: this is used to interpolate the :math:`r^2` 
              Expression to the same degree as used in the definition of the Trial and Test function
              spaces.

    """


    # Get mesh from function
    if isinstance(v, cpp.function.Function) and mesh is None:
        mesh = v.function_space().mesh()

    # Define integration measure and domain
    dx = ufl.dx(mesh)

    # Select norm type
    if isinstance(v, GenericVector):
        return v.norm(norm_type.lower())
    
    elif (isinstance(v, Coefficient) and isinstance(v, Function)):
        # DS: HERE IS WHERE I MODIFY
        r2 = Expression('pow(x[0],2)', degree=func_degree)
    
        if norm_type.lower() == "l2":
            M = v**2 * r2 * dx
        elif norm_type.lower() == "h1":
            M = (v**2 + grad(v)**2) * r2 * dx
        elif norm_type.lower() == "h10":
            M = grad(v)**2 * r2 * dx
        elif norm_type.lower() == "hdiv":
            M = (v**2 + div(v)**2) * r2 * dx
        elif norm_type.lower() == "hdiv0":
            M = div(v)**2 * r2 * dx
        elif norm_type.lower() == "hcurl":
            M = (v**2 + curl(v)**2) * r2 * dx
        elif norm_type.lower() == "hcurl0":
            M = curl(v)**2 * r2 * dx
        else:
            raise ValueError("Unknown norm type {}".format(str(norm_type)))
    else:
        raise TypeError("Do not know how to compute norm of {}".format(str(v)))

    # Assemble value and return
    return sqrt(assemble(M))
Esempio n. 8
0
def norm(v, norm_type="L2", mesh=None):
    """Compute the norm of ``v``.

    :arg v: a ufl expression (:class:`~.ufl.classes.Expr`) to compute the norm of
    :arg norm_type: the type of norm to compute, see below for
         options.
    :arg mesh: an optional mesh on which to compute the norm
         (currently ignored).

    Available norm types are:

    * L2

       .. math::

          ||v||_{L^2}^2 = \int (v, v) \mathrm{d}x

    * H1

       .. math::

          ||v||_{H^1}^2 = \int (v, v) + (\\nabla v, \\nabla v) \mathrm{d}x

    * Hdiv

       .. math::

          ||v||_{H_\mathrm{div}}^2 = \int (v, v) + (\\nabla\cdot v, \\nabla \cdot v) \mathrm{d}x

    * Hcurl

       .. math::

          ||v||_{H_\mathrm{curl}}^2 = \int (v, v) + (\\nabla \wedge v, \\nabla \wedge v) \mathrm{d}x
    """
    typ = norm_type.lower()
    if typ == 'l2':
        form = inner(v, v)*dx
    elif typ == 'h1':
        form = inner(v, v)*dx + inner(grad(v), grad(v))*dx
    elif typ == "hdiv":
        form = inner(v, v)*dx + div(v)*div(v)*dx
    elif typ == "hcurl":
        form = inner(v, v)*dx + inner(curl(v), curl(v))*dx
    else:
        raise RuntimeError("Unknown norm type '%s'" % norm_type)

    return sqrt(assemble(form))
Esempio n. 9
0
 def nonlinearity(function):
     if self.use_ema:
        return 2*inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function)*u_ext, v1) * dx
         # return 2*inner(dot(sym(grad(function)), u_ext), v) * dx + inner(div(u_ext)*function, v) * dx
         # QQ implement this way?
     else:
         return inner(dot(grad(function), u_ext), v1) * dx
Esempio n. 10
0
def assemble_div_vector(k, offset):
    mesh = create_quad_mesh(offset)
    V = FunctionSpace(mesh, ("RTCF", k + 1))
    v = ufl.TestFunction(V)
    form = ufl.inner(Constant(mesh, 1), ufl.div(v)) * ufl.dx
    L = fem.assemble_vector(form)
    return L[:]
def monolithic_assembly(clock, reps, mesh, use_cpp_forms):
    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = dolfinx.FunctionSpace(mesh, TH)
    num_dofs = W.dim

    U = dolfinx.Function(W)
    u, p = ufl.split(U)
    v, q = ufl.TestFunctions(W)

    g = ufl.as_vector([0.0, 0.0, -1.0])
    F = (
        ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
        + ufl.inner(p, ufl.div(v)) * ufl.dx
        + ufl.inner(ufl.div(u), q) * ufl.dx
        - ufl.inner(g, v) * ufl.dx
    )
    J = ufl.derivative(F, U, ufl.TrialFunction(W))
    bcs = []

    # Get jitted forms for better performance
    if use_cpp_forms:
        F = dolfinx.fem.assemble._create_cpp_form(F)
        J = dolfinx.fem.assemble._create_cpp_form(J)

    b = dolfinx.fem.create_vector(F)
    A = dolfinx.fem.create_matrix(J)
    for i in range(reps):
        A.zeroEntries()
        with b.localForm() as b_local:
            b_local.set(0.0)

        with dolfinx.common.Timer("ZZZ Mat Monolithic") as tmr:
            dolfinx.fem.assemble_matrix(A, J, bcs)
            A.assemble()
            clock["mat"] += tmr.elapsed()[0]

        with dolfinx.common.Timer("ZZZ Vec Monolithic") as tmr:
            dolfinx.fem.assemble_vector(b, F)
            dolfinx.fem.apply_lifting(b, [J], bcs=[bcs], x0=[U.vector], scale=-1.0)
            b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
            dolfinx.fem.set_bc(b, bcs, x0=U.vector, scale=-1.0)
            b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
            clock["vec"] += tmr.elapsed()[0]

    return num_dofs, A, b
Esempio n. 12
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)
    a = form(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)
    L = form(L)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    facetdim = mesh.topology.dim - 1
    mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
    bndry_facets = np.where(
        np.array(compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    a = form(a)
    A = assemble_matrix(a, bcs=[bc])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    M = (u_exact - uh)**2 * dx
    M = form(M)
    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Esempio n. 13
0
    def __init__(self, mesh, Vh, prior, misfit, simulation_times,
                 wind_velocity, gls_stab):
        self.mesh = mesh
        self.Vh = Vh
        self.prior = prior
        self.misfit = misfit
        # Assume constant timestepping
        self.simulation_times = simulation_times
        dt = simulation_times[1] - simulation_times[0]

        u = dl.TrialFunction(Vh[STATE])
        v = dl.TestFunction(Vh[STATE])

        kappa = dl.Constant(.001)
        dt_expr = dl.Constant(dt)

        r_trial = u + dt_expr * (-ufl.div(kappa * ufl.grad(u)) +
                                 ufl.inner(wind_velocity, ufl.grad(u)))
        r_test = v + dt_expr * (-ufl.div(kappa * ufl.grad(v)) +
                                ufl.inner(wind_velocity, ufl.grad(v)))

        h = dl.CellDiameter(mesh)
        vnorm = ufl.sqrt(ufl.inner(wind_velocity, wind_velocity))
        if gls_stab:
            tau = ufl.min_value((h * h) / (dl.Constant(2.) * kappa), h / vnorm)
        else:
            tau = dl.Constant(0.)

        self.M = dl.assemble(ufl.inner(u, v) * dl.dx)
        self.M_stab = dl.assemble(ufl.inner(u, v + tau * r_test) * dl.dx)
        self.Mt_stab = dl.assemble(ufl.inner(u + tau * r_trial, v) * dl.dx)
        Nvarf = (ufl.inner(kappa * ufl.grad(u), ufl.grad(v)) +
                 ufl.inner(wind_velocity, ufl.grad(u)) * v) * dl.dx
        Ntvarf = (ufl.inner(kappa * ufl.grad(v), ufl.grad(u)) +
                  ufl.inner(wind_velocity, ufl.grad(v)) * u) * dl.dx
        self.N = dl.assemble(Nvarf)
        self.Nt = dl.assemble(Ntvarf)
        stab = dl.assemble(tau * ufl.inner(r_trial, r_test) * dl.dx)
        self.L = self.M + dt * self.N + stab
        self.Lt = self.M + dt * self.Nt + stab

        self.solver = dl.PETScLUSolver(dl.as_backend_type(self.L))
        self.solvert = dl.PETScLUSolver(dl.as_backend_type(self.Lt))

        # Part of model public API
        self.gauss_newton_approx = False
def assemble_div_vector(k, offset):
    mesh = create_quad_mesh(offset)
    V = FunctionSpace(mesh, ("RTCF", k + 1))
    v = ufl.TestFunction(V)
    L = form(
        ufl.inner(Constant(mesh, PETSc.ScalarType(1)), ufl.div(v)) * ufl.dx)
    b = assemble_vector(L)
    return b[:]
Esempio n. 15
0
def assemble_div_matrix(k, offset):
    mesh = create_quad_mesh(offset)
    V = FunctionSpace(mesh, ("DQ", k))
    W = FunctionSpace(mesh, ("RTCF", k + 1))
    u, w = ufl.TrialFunction(V), ufl.TestFunction(W)
    form = ufl.inner(u, ufl.div(w)) * ufl.dx
    A = fem.assemble_matrix(form)
    A.assemble()
    return A[:, :]
Esempio n. 16
0
    def set_forms(self):
        """
        Set up week forms
        """
        # Assume constant timestepping
        dt = self.simulation_times[1] - self.simulation_times[0]

        self.wind_velocity = self.computeVelocityField()

        u = dl.TrialFunction(self.Vh[STATE])
        v = dl.TestFunction(self.Vh[STATE])

        kappa = dl.Constant(self.kappa)
        dt_expr = dl.Constant(dt)

        r_trial = u + dt_expr * (-ufl.div(kappa * ufl.grad(u)) +
                                 ufl.inner(self.wind_velocity, ufl.grad(u)))
        r_test = v + dt_expr * (-ufl.div(kappa * ufl.grad(v)) +
                                ufl.inner(self.wind_velocity, ufl.grad(v)))

        h = dl.CellDiameter(self.mesh)
        vnorm = ufl.sqrt(ufl.inner(self.wind_velocity, self.wind_velocity))
        if self.gls_stab:
            tau = ufl.min_value((h * h) / (dl.Constant(2.) * kappa), h / vnorm)
        else:
            tau = dl.Constant(0.)

        self.M = dl.assemble(ufl.inner(u, v) * ufl.dx)
        self.M_stab = dl.assemble(ufl.inner(u, v + tau * r_test) * ufl.dx)
        self.Mt_stab = dl.assemble(ufl.inner(u + tau * r_trial, v) * ufl.dx)
        Nvarf = (ufl.inner(kappa * ufl.grad(u), ufl.grad(v)) +
                 ufl.inner(self.wind_velocity, ufl.grad(u)) * v) * ufl.dx
        Ntvarf = (ufl.inner(kappa * ufl.grad(v), ufl.grad(u)) +
                  ufl.inner(self.wind_velocity, ufl.grad(v)) * u) * ufl.dx
        self.N = dl.assemble(Nvarf)
        self.Nt = dl.assemble(Ntvarf)
        stab = dl.assemble(tau * ufl.inner(r_trial, r_test) * ufl.dx)
        self.L = self.M + dt * self.N + stab
        self.Lt = self.M + dt * self.Nt + stab

        self.solver = PETScLUSolver(self.mpi_comm)
        self.solver.set_operator(dl.as_backend_type(self.L))
        self.solvert = PETScLUSolver(self.mpi_comm)
        self.solvert.set_operator(dl.as_backend_type(self.Lt))
Esempio n. 17
0
 def save_vel(self, is_tent, field, t):
     self.vFunction.assign(field)
     self.fileDict['u2' if is_tent else 'u']['file'] << self.vFunction
     if self.doSaveDiff:
         self.vFunction.assign((1.0 / self.vel_normalization_factor[0]) * (field - self.solution))
         self.fileDict['u2D' if is_tent else 'uD']['file'] << self.vFunction
     if self.args.ldsg:
         # info(div(2.*sym(grad(field))-grad(field)).ufl_shape)
         form = div(2.*sym(grad(field))-grad(field))
         self.pFunction.assign(project(sqrt_ufl(inner(form, form)), self.pSpace))
         self.fileDict['ldsg2' if is_tent else 'ldsg']['file'] << self.pFunction
Esempio n. 18
0
def split_mixed_poisson(cell, degree):
    m = Mesh(VectorElement('CG', cell, 1))
    if cell.cellname() in ['interval * interval', 'quadrilateral']:
        hdiv_element = FiniteElement('RTCF', cell, degree)
    elif cell.cellname() == 'triangle * interval':
        U0 = FiniteElement('RT', triangle, degree)
        U1 = FiniteElement('DG', triangle, degree - 1)
        V0 = FiniteElement('CG', interval, degree)
        V1 = FiniteElement('DG', interval, degree - 1)
        Wa = HDivElement(TensorProductElement(U0, V1))
        Wb = HDivElement(TensorProductElement(U1, V0))
        hdiv_element = EnrichedElement(Wa, Wb)
    elif cell.cellname() == 'quadrilateral * interval':
        hdiv_element = FiniteElement('NCF', cell, degree)
    RT = FunctionSpace(m, hdiv_element)
    DG = FunctionSpace(m, FiniteElement('DQ', cell, degree - 1))
    sigma = TrialFunction(RT)
    u = TrialFunction(DG)
    tau = TestFunction(RT)
    v = TestFunction(DG)
    return [dot(sigma, tau) * dx, div(tau) * u * dx, div(sigma) * v * dx]
Esempio n. 19
0
def test_expand_indices():
    element = FiniteElement("Lagrange", triangle, 2)
    v = TestFunction(element)
    u = TrialFunction(element)

    def evaluate(form):
        return form.cell_integral()[0].integrand()((), {v: 3, u: 5})  # TODO: How to define values of derivatives?

    a = div(grad(v)) * u * dx
    # a1 = evaluate(a)
    a = expand_derivatives(a)
    # a2 = evaluate(a)
    a = expand_indices(a)
Esempio n. 20
0
def norm(v, norm_type="L2", mesh=None):
    r"""Compute the norm of ``v``.

    :arg v: a ufl expression (:class:`~.ufl.classes.Expr`) to compute the norm of
    :arg norm_type: the type of norm to compute, see below for
         options.
    :arg mesh: an optional mesh on which to compute the norm
         (currently ignored).

    Available norm types are:

    - Lp :math:`||v||_{L^p} = (\int |v|^p)^{\frac{1}{p}} \mathrm{d}x`
    - H1 :math:`||v||_{H^1}^2 = \int (v, v) + (\nabla v, \nabla v) \mathrm{d}x`
    - Hdiv :math:`||v||_{H_\mathrm{div}}^2 = \int (v, v) + (\nabla\cdot v, \nabla \cdot v) \mathrm{d}x`
    - Hcurl :math:`||v||_{H_\mathrm{curl}}^2 = \int (v, v) + (\nabla \wedge v, \nabla \wedge v) \mathrm{d}x`

    """
    typ = norm_type.lower()
    p = 2
    if typ == 'l2':
        expr = inner(v, v)
    elif typ.startswith('l'):
        try:
            p = int(typ[1:])
            if p < 1:
                raise ValueError
        except ValueError:
            raise ValueError("Don't know how to interpret %s-norm" % norm_type)
        expr = inner(v, v)
    elif typ == 'h1':
        expr = inner(v, v) + inner(grad(v), grad(v))
    elif typ == "hdiv":
        expr = inner(v, v) + div(v)*div(v)
    elif typ == "hcurl":
        expr = inner(v, v) + inner(curl(v), curl(v))
    else:
        raise RuntimeError("Unknown norm type '%s'" % norm_type)

    return assemble((expr**(p/2))*dx)**(1/p)
Esempio n. 21
0
def test_expand_indices():
    element = FiniteElement("Lagrange", triangle, 2)
    v = TestFunction(element)
    u = TrialFunction(element)

    def evaluate(form):
        return form.cell_integral()[0].integrand()((), {
            v: 3,
            u: 5
        })  # TODO: How to define values of derivatives?

    a = div(grad(v)) * u * dx
    # a1 = evaluate(a)
    a = expand_derivatives(a)
    # a2 = evaluate(a)
    a = expand_indices(a)
Esempio n. 22
0
def test_manufactured_poisson(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """

    with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf:
        mesh = xdmf.read_mesh(GhostMode.none)

    V = FunctionSpace(mesh, ("Lagrange", degree))
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect
    # of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of
    # non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)

    t0 = time.time()
    L = fem.Form(L)
    t1 = time.time()
    print("Linear form compile time:", t1 - t0)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    mesh.create_connectivity_all()
    facetdim = mesh.topology.dim - 1
    bndry_facets = np.where(
        np.array(mesh.topology.on_boundary(facetdim)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    assert (len(bdofs) < V.dim())
    bc = DirichletBC(u_bc, bdofs)

    t0 = time.time()
    b = assemble_vector(L)
    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])
    t1 = time.time()
    print("Vector assembly time:", t1 - t0)

    t0 = time.time()
    a = fem.Form(a)
    t1 = time.time()
    print("Bilinear form compile time:", t1 - t0)

    t0 = time.time()
    A = assemble_matrix(a, [bc])
    A.assemble()
    t1 = time.time()
    print("Matrix assembly time:", t1 - t0)

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.comm_world)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    t0 = time.time()
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    t1 = time.time()
    print("Linear solver time:", t1 - t0)

    M = (u_exact - uh)**2 * dx
    t0 = time.time()
    M = fem.Form(M)
    t1 = time.time()
    print("Error functional compile time:", t1 - t0)

    t0 = time.time()
    error = assemble_scalar(M)
    error = MPI.sum(mesh.mpi_comm(), error)
    t1 = time.time()

    print("Error assembly time:", t1 - t0)
    assert np.absolute(error) < 1.0e-14
Esempio n. 23
0
lid_velocity.interpolate(lid_velocity_expression)
facets = locate_entities_boundary(mesh, 1, lid)
bc1 = DirichletBC(lid_velocity, locate_dofs_topological(V, 1, facets))

# Collect Dirichlet boundary conditions
bcs = [bc0, bc1]

# We now define the bilinear and linear forms corresponding to the weak
# mixed formulation of the Stokes equations in a blocked structure::

# Define variational problem
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
f = dolfinx.Constant(mesh, (0, 0))

a = [[inner(grad(u), grad(v)) * dx, inner(p, div(v)) * dx],
     [inner(div(u), q) * dx, None]]

L = [inner(f, v) * dx,
     inner(dolfinx.Constant(mesh, 0), q) * dx]

# We will use a block-diagonal preconditioner to solve this problem::

a_p11 = inner(p, q) * dx
a_p = [[a[0][0], None],
       [None, a_p11]]

# Nested matrix solver
# ^^^^^^^^^^^^^^^^^^^^
#
# We now assemble the bilinear form into a nested matrix `A`, and call
Esempio n. 24
0
 def pressure_rhs():
     if self.useLaplace or self.bcv == 'LAP':
         return inner(p0, div(v1)) * dx - inner(p0*n, v1) * problem.get_outflow_measure_form()
         # NT term inner(inner(p, n), v) is 0 when p=0 on outflow
     else:
         return inner(p0, div(v1)) * dx
Esempio n. 25
0
 def nonlinearity(function):
     if self.args.ema:
         return 2 * inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function) * u_ext, v1) * dx
     else:
         return inner(dot(grad(function), u_ext), v1) * dx
Esempio n. 26
0
def test_assembly_solve_taylor_hood_nl(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    gdim = mesh.geometry.dim
    P2 = VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return np.isclose(x[0], 0.0)

    def boundary1(x):
        """Define boundary x = 1"""
        return np.isclose(x[0], 1.0)

    def initial_guess_u(x):
        u_init = np.row_stack(
            (np.sin(x[0]) * np.sin(x[1]), np.cos(x[0]) * np.cos(x[1])))
        if gdim == 3:
            u_init = np.row_stack((u_init, np.cos(x[2])))
        return u_init

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    u_bc_0 = Function(P2)
    u_bc_0.interpolate(
        lambda x: np.row_stack(tuple(x[j] + float(j) for j in range(gdim))))

    u_bc_1 = Function(P2)
    u_bc_1.interpolate(
        lambda x: np.row_stack(tuple(np.sin(x[j]) for j in range(gdim))))

    facetdim = mesh.topology.dim - 1
    bndry_facets0 = locate_entities_boundary(mesh, facetdim, boundary0)
    bndry_facets1 = locate_entities_boundary(mesh, facetdim, boundary1)

    bdofs0 = locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = locate_dofs_topological(P2, facetdim, bndry_facets1)

    bcs = [dirichletbc(u_bc_0, bdofs0), dirichletbc(u_bc_1, bdofs1)]

    u, p = Function(P2), Function(P1)
    du, dp = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    F = [
        inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx,
        inner(ufl.div(u), q) * dx
    ]
    J = [[derivative(F[0], u, du),
          derivative(F[0], p, dp)],
         [derivative(F[1], u, du),
          derivative(F[1], p, dp)]]
    P = [[J[0][0], None], [None, inner(dp, q) * dx]]

    F, J, P = form(F), form(J), form(P)

    # -- Blocked and monolithic

    Jmat0 = create_matrix_block(J)
    Pmat0 = create_matrix_block(P)
    Fvec0 = create_vector_block(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)
    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_block, Fvec0)
    snes.setJacobian(problem.J_block, J=Jmat0, P=Pmat0)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x0 = create_vector_block(F)
    with u.vector.localForm() as _u, p.vector.localForm() as _p:
        scatter_local_vectors(x0, [_u.array_r, _p.array_r],
                              [(u.function_space.dofmap.index_map,
                                u.function_space.dofmap.index_map_bs),
                               (p.function_space.dofmap.index_map,
                                p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    snes.solve(None, x0)

    assert snes.getConvergedReason() > 0

    # -- Blocked and nested

    Jmat1 = create_matrix_nest(J)
    Pmat1 = create_matrix_nest(P)
    Fvec1 = create_vector_nest(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    nested_IS = Jmat1.getNestISs()

    snes.getKSP().setType("minres")
    snes.getKSP().setTolerances(rtol=1e-12)
    snes.getKSP().getPC().setType("fieldsplit")
    snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]],
                                          ["p", nested_IS[1][1]])

    ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_p.setType("preonly")
    ksp_p.getPC().setType('lu')

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_nest, Fvec1)
    snes.setJacobian(problem.J_nest, J=Jmat1, P=Pmat1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x1 = create_vector_nest(F)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    x1.set(0.0)
    snes.solve(None, x1)

    assert snes.getConvergedReason() > 0
    assert nest_matrix_norm(Jmat1) == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec1.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x1.norm() == pytest.approx(x0.norm(), 1.0e-12)

    # -- Monolithic

    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = FunctionSpace(mesh, TH)
    U = Function(W)
    dU = ufl.TrialFunction(W)
    u, p = ufl.split(U)
    du, dp = ufl.split(dU)
    v, q = ufl.TestFunctions(W)

    F = inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx \
        + inner(ufl.div(u), q) * dx
    J = derivative(F, U, dU)
    P = inner(ufl.grad(du), ufl.grad(v)) * dx + inner(dp, q) * dx

    F, J, P = form(F), form(J), form(P)

    bdofsW0_P2_0 = locate_dofs_topological((W.sub(0), P2), facetdim,
                                           bndry_facets0)
    bdofsW0_P2_1 = locate_dofs_topological((W.sub(0), P2), facetdim,
                                           bndry_facets1)

    bcs = [
        dirichletbc(u_bc_0, bdofsW0_P2_0, W.sub(0)),
        dirichletbc(u_bc_1, bdofsW0_P2_1, W.sub(0))
    ]

    Jmat2 = create_matrix(J)
    Pmat2 = create_matrix(P)
    Fvec2 = create_vector(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)
    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")

    problem = NonlinearPDE_SNESProblem(F, J, U, bcs, P=P)
    snes.setFunction(problem.F_mono, Fvec2)
    snes.setJacobian(problem.J_mono, J=Jmat2, P=Pmat2)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    x2 = create_vector(F)
    x2.array = U.vector.array_r

    snes.solve(None, x2)

    assert snes.getConvergedReason() > 0
    assert Jmat2.norm() == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec2.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x2.norm() == pytest.approx(x0.norm(), 1.0e-12)
Esempio n. 27
0
def test_div_grad_then_integrate_over_cells_and_boundary():

    # Define 2D geometry
    n = 10
    mesh = RectangleMesh(Point(0.0, 0.0), Point(2.0, 3.0), 2 * n, 3 * n)

    x, y = SpatialCoordinate(mesh)
    xs = 0.1 + 0.8 * x / 2  # scaled to be within [0.1,0.9]
    #    ys = 0.1 + 0.8 * y / 3  # scaled to be within [0.1,0.9]
    n = FacetNormal(mesh)

    # Define list of expressions to test, and configure accuracies
    # these expressions are known to pass with.  The reason some
    # functions are less accurately integrated is likely that the
    # default choice of quadrature rule is not perfect
    F_list = []

    def reg(exprs, acc=10):
        for expr in exprs:
            F_list.append((expr, acc))

    # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere
    # reg([Constant(0.0, cell=cell)])
    # reg([Constant(1.0, cell=cell)])
    monomial_list = [x**q for q in range(2, 6)]
    reg(monomial_list)
    reg([2.3 * p + 4.5 * q for p in monomial_list for q in monomial_list])
    reg([xs**xs])
    reg(
        [xs**(xs**2)], 8
    )  # Note: Accuracies here are from 1D case, not checked against 2D results.
    reg([xs**(xs**3)], 6)
    reg([xs**(xs**4)], 2)
    # Special functions:
    reg([atan(xs)], 8)
    reg([sin(x), cos(x), exp(x)], 5)
    reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3)
    reg([asin(xs), acos(xs)], 1)
    reg([tan(xs)], 7)

    # To handle tensor algebra, make an x dependent input tensor
    # xx and square all expressions
    def reg2(exprs, acc=10):
        for expr in exprs:
            F_list.append((inner(expr, expr), acc))

    xx = as_matrix([[2 * x**2, 3 * x**3], [11 * x**5, 7 * x**4]])
    xxs = as_matrix([[2 * xs**2, 3 * xs**3], [11 * xs**5, 7 * xs**4]])
    x3v = as_vector([3 * x**2, 5 * x**3, 7 * x**4])
    cc = as_matrix([[2, 3], [4, 5]])
    reg2(
        [xx]
    )  # TODO: Make unit test for UFL from this, results in listtensor with free indices
    reg2([x3v])
    reg2([cross(3 * x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))])
    reg2([xx.T])
    reg2([tr(xx)])
    reg2([det(xx)])
    reg2([dot(xx, 0.1 * xx)])
    reg2([outer(xx, xx.T)])
    reg2([dev(xx)])
    reg2([sym(xx)])
    reg2([skew(xx)])
    reg2([elem_mult(7 * xx, cc)])
    reg2([elem_div(7 * xx, xx + cc)])
    reg2([elem_pow(1e-3 * xxs, 1e-3 * cc)])
    reg2([elem_pow(1e-3 * cc, 1e-3 * xx)])
    reg2([elem_op(lambda z: sin(z) + 2, 0.03 * xx)], 2)  # pretty inaccurate...

    # FIXME: Add tests for all UFL operators:
    # These cause discontinuities and may be harder to test in the
    # above fashion:
    # 'inv', 'cofac',
    # 'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not',
    # 'conditional', 'sign',
    # 'jump', 'avg',
    # 'LiftingFunction', 'LiftingOperator',

    # FIXME: Test other derivatives: (but algorithms for operator
    # derivatives are the same!):
    # 'variable', 'diff',
    # 'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative',

    # Run through all operators defined above and compare integrals
    debug = 0
    if debug:
        F_list = F_list[1:]

    for F, acc in F_list:
        if debug:
            print('\n', "F:", str(F))

        # Integrate over domain and its boundary
        int_dx = assemble(div(grad(F)) * dx(mesh))  # noqa
        int_ds = assemble(dot(grad(F), n) * ds(mesh))  # noqa

        if debug:
            print(int_dx, int_ds)

        # Compare results. Using custom relative delta instead of
        # decimal digits here because some numbers are >> 1.
        delta = min(abs(int_dx), abs(int_ds)) * 10**-acc
        assert int_dx - int_ds <= delta
Esempio n. 28
0
def norm(v, norm_type="L2", mesh=None):
    """
    Return the norm of a given vector or function.

    *Arguments*
        v
            a :py:class:`Vector <dolfin.cpp.Vector>` or
            a :py:class:`Function <dolfin.functions.function.Function>`.
        norm_type
            see below for alternatives.
        mesh
            optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the norm.

    If the norm type is not specified, the standard :math:`L^2` -norm
    is computed. Possible norm types include:

    *Vectors*

    ================   =================  ================
    Norm               Usage
    ================   =================  ================
    :math:`l^2`        norm(x, 'l2')      Default
    :math:`l^1`        norm(x, 'l1')
    :math:`l^\infty`   norm(x, 'linf')
    ================   =================  ================

    *Functions*

    ================  =================  =================================
    Norm              Usage              Includes the :math:`L^2` -term
    ================  =================  =================================
    :math:`L^2`       norm(v, 'L2')      Yes
    :math:`H^1`       norm(v, 'H1')      Yes
    :math:`H^1_0`     norm(v, 'H10')     No
    :math:`H` (div)   norm(v, 'Hdiv')    Yes
    :math:`H` (div)   norm(v, 'Hdiv0')   No
    :math:`H` (curl)  norm(v, 'Hcurl')   Yes
    :math:`H` (curl)  norm(v, 'Hcurl0')  No
    ================  =================  =================================

    *Examples of usage*

    .. code-block:: python

        v = Function(V)
        x = v.vector()

        print norm(x, 'linf')   # print the infinity norm of vector x

        n = norm(v)             # compute L^2 norm of v
        print norm(v, 'Hdiv')   # print H(div) norm of v
        n = norm(v, 'H1', mesh) # compute H^1 norm of v on given mesh

    """

    if not isinstance(v, (GenericVector, GenericFunction)):
        raise TypeError, "expected a GenericVector or GenericFunction"

    # Check arguments
    if not isinstance(norm_type, str):
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Norm type must be a string, not " + str(type(norm_type)))
    if mesh is not None and not isinstance(mesh, Mesh):
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Expecting a Mesh, not " + str(type(mesh)))

    # Select norm type
    if isinstance(v, GenericVector):
        return v.norm(norm_type.lower())

    elif (isinstance(v, Coefficient) and isinstance(v, GenericFunction)):
        if norm_type.lower() == "l2":
            M = inner(v, v)*dx()
        elif norm_type.lower() == "h1":
            M = inner(v, v)*dx() + inner(grad(v), grad(v))*dx()
        elif norm_type.lower() == "h10":
            M = inner(grad(v), grad(v))*dx()
        elif norm_type.lower() == "hdiv":
            M = inner(v, v)*dx() + div(v)*div(v)*dx()
        elif norm_type.lower() == "hdiv0":
            M = div(v)*div(v)*dx()
        elif norm_type.lower() == "hcurl":
            M = inner(v, v)*dx() + inner(curl(v), curl(v))*dx()
        elif norm_type.lower() == "hcurl0":
            M = inner(curl(v), curl(v))*dx()
        else:
            cpp.dolfin_error("norms.py",
                             "compute norm",
                             "Unknown norm type (\"%s\") for functions" % str(norm_type))
    else:
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Unknown object type. Must be a vector or a function")

    # Get mesh
    if isinstance(v, Function) and mesh is None:
        mesh = v.function_space().mesh()

    # Assemble value
    r = assemble(M, mesh=mesh, form_compiler_parameters={"representation": "quadrature"})

    # Check value
    if r < 0.0:
        cpp.dolfin_error("norms.py",
                         "compute norm",
                         "Square of norm is negative, might be a round-off error")
    elif r == 0.0:
        return 0.0
    else:
        return sqrt(r)
Esempio n. 29
0
    def solve(self, problem):
        self.problem = problem
        doSave = problem.doSave
        save_this_step = False
        onlyVel = problem.saveOnlyVel
        dt = self.metadata['dt']

        nu = Constant(self.problem.nu)
        self.tc.init_watch('init', 'Initialization', True, count_to_percent=False)
        self.tc.init_watch('rhs', 'Assembled right hand side', True, count_to_percent=True)
        self.tc.init_watch('applybc1', 'Applied velocity BC 1st step', True, count_to_percent=True)
        self.tc.init_watch('applybc3', 'Applied velocity BC 3rd step', True, count_to_percent=True)
        self.tc.init_watch('applybcP', 'Applied pressure BC or othogonalized rhs', True, count_to_percent=True)
        self.tc.init_watch('assembleMatrices', 'Initial matrix assembly', False, count_to_percent=True)
        self.tc.init_watch('solve 1', 'Running solver on 1st step', True, count_to_percent=True)
        self.tc.init_watch('solve 2', 'Running solver on 2nd step', True, count_to_percent=True)
        self.tc.init_watch('solve 3', 'Running solver on 3rd step', True, count_to_percent=True)
        self.tc.init_watch('solve 4', 'Running solver on 4th step', True, count_to_percent=True)
        self.tc.init_watch('assembleA1', 'Assembled A1 matrix (without stabiliz.)', True, count_to_percent=True)
        self.tc.init_watch('assembleA1stab', 'Assembled A1 stabilization', True, count_to_percent=True)
        self.tc.init_watch('next', 'Next step assignments', True, count_to_percent=True)
        self.tc.init_watch('saveVel', 'Saved velocity', True)

        self.tc.start('init')

        # Define function spaces (P2-P1)
        mesh = self.problem.mesh
        self.V = VectorFunctionSpace(mesh, "Lagrange", 2)  # velocity
        self.Q = FunctionSpace(mesh, "Lagrange", 1)  # pressure
        self.PS = FunctionSpace(mesh, "Lagrange", 2)  # partial solution (must be same order as V)
        self.D = FunctionSpace(mesh, "Lagrange", 1)  # velocity divergence space

        problem.initialize(self.V, self.Q, self.PS, self.D)

        # Define trial and test functions
        u = TrialFunction(self.V)
        v = TestFunction(self.V)
        p = TrialFunction(self.Q)
        q = TestFunction(self.Q)

        n = FacetNormal(mesh)
        I = Identity(find_geometric_dimension(u))

        # Initial conditions: u0 velocity at previous time step u1 velocity two time steps back p0 previous pressure
        [u1, u0, p0] = self.problem.get_initial_conditions([{'type': 'v', 'time': -dt},
                                                            {'type': 'v', 'time': 0.0},
                                                            {'type': 'p', 'time': 0.0}])

        u_ = Function(self.V)  # current tentative velocity
        u_cor = Function(self.V)  # current corrected velocity
        p_ = Function(self.Q)  # current pressure or pressure help function from rotation scheme
        p_mod = Function(self.Q)  # current modified pressure from rotation scheme

        # Define coefficients
        k = Constant(self.metadata['dt'])
        f = Constant((0, 0, 0))

        # Define forms
        # step 1: Tentative velocity, solve to u_
        u_ext = 1.5 * u0 - 0.5 * u1  # extrapolation for convection term

        # Stabilisation
        h = CellSize(mesh)
        if self.args.cbc_tau:
            # used in Simula cbcflow project
            tau = Constant(self.stabCoef) * h / (sqrt(inner(u_ext, u_ext)) + h)
        else:
            # proposed in R. Codina: On stabilized finite element methods for linear systems of
            # convection-diffusion-reaction equations.
            tau = Constant(self.stabCoef) * k * h ** 2 / (
            2 * nu * k + k * h * sqrt(DOLFIN_EPS + inner(u_ext, u_ext)) + h ** 2)
            # DOLFIN_EPS is added because of FEniCS bug that inner(u_ext, u_ext) can be negative when u_ext = 0

        if self.use_full_SUPG:
            v1 = v + tau * 0.5 * dot(grad(v), u_ext)
            parameters['form_compiler']['quadrature_degree'] = 6
        else:
            v1 = v

        def nonlinearity(function):
            if self.args.ema:
                return 2 * inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function) * u_ext, v1) * dx
            else:
                return inner(dot(grad(function), u_ext), v1) * dx

        def diffusion(fce):
            if self.useLaplace:
                return nu * inner(grad(fce), grad(v1)) * dx
            else:
                form = inner(nu * 2 * sym(grad(fce)), sym(grad(v1))) * dx
                if self.bcv == 'CDN':
                    return form
                if self.bcv == 'LAP':
                    return form - inner(nu * dot(grad(fce).T, n), v1) * problem.get_outflow_measure_form()
                if self.bcv == 'DDN':
                    return form  # additional term must be added to non-constant part

        def pressure_rhs():
            if self.args.bc == 'outflow':
                return inner(p0, div(v1)) * dx
            else:
                return inner(p0, div(v1)) * dx - inner(p0 * n, v1) * problem.get_outflow_measure_form()

        a1_const = (1. / k) * inner(u, v1) * dx + diffusion(0.5 * u)
        a1_change = nonlinearity(0.5 * u)
        if self.bcv == 'DDN':
            # does not penalize influx for current step, only for the next one
            # this can lead to oscilation:
            # DDN correct next step, but then u_ext is OK so in next step DDN is not used, leading to new influx...
            # u and u_ext cannot be switched, min_value is nonlinear function
            a1_change += -0.5 * min_value(Constant(0.), inner(u_ext, n)) * inner(u,
                                                                                 v1) * problem.get_outflow_measure_form()
            # NT works only with uflacs compiler

        L1 = (1. / k) * inner(u0, v1) * dx - nonlinearity(0.5 * u0) - diffusion(0.5 * u0) + pressure_rhs()
        if self.bcv == 'DDN':
            L1 += 0.5 * min_value(0., inner(u_ext, n)) * inner(u0, v1) * problem.get_outflow_measure_form()

        # Non-consistent SUPG stabilisation
        if self.stabilize and not self.use_full_SUPG:
            # a1_stab = tau*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx
            a1_stab = 0.5 * tau * inner(dot(grad(u), u_ext), dot(grad(v), u_ext)) * dx(None, {'quadrature_degree': 6})
            # optional: to use Crank Nicolson in stabilisation term following change of RHS is needed:
            # L1 += -0.5*tau*inner(dot(grad(u0), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})

        outflow_area = Constant(problem.outflow_area)
        need_outflow = Constant(0.0)
        if self.useRotationScheme:
            # Rotation scheme
            F2 = inner(grad(p), grad(q)) * dx + (1. / k) * q * div(u_) * dx
        else:
            # Projection, solve to p_
            if self.forceOutflow and problem.can_force_outflow:
                info('Forcing outflow.')
                F2 = inner(grad(p - p0), grad(q)) * dx + (1. / k) * q * div(u_) * dx
                for m in problem.get_outflow_measures():
                    F2 += (1. / k) * (1. / outflow_area) * need_outflow * q * m
            else:
                F2 = inner(grad(p - p0), grad(q)) * dx + (1. / k) * q * div(u_) * dx
        a2, L2 = system(F2)

        # step 3: Finalize, solve to u_
        if self.useRotationScheme:
            # Rotation scheme
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_), v) * dx
        else:
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_ - p0), v) * dx
        a3, L3 = system(F3)

        if self.useRotationScheme:
            # Rotation scheme: modify pressure
            F4 = (p - p0 - p_ + nu * div(u_)) * q * dx
            a4, L4 = system(F4)

        # Assemble matrices
        self.tc.start('assembleMatrices')
        A1_const = assemble(a1_const)  # must be here, so A1 stays one Python object during repeated assembly
        A1_change = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwritten)
        if self.stabilize and not self.use_full_SUPG:
            A1_stab = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwritten)
        A2 = assemble(a2)
        A3 = assemble(a3)
        if self.useRotationScheme:
            A4 = assemble(a4)
        self.tc.end('assembleMatrices')

        if self.solvers == 'direct':
            self.solver_vel_tent = LUSolver('mumps')
            self.solver_vel_cor = LUSolver('mumps')
            self.solver_p = LUSolver('mumps')
            if self.useRotationScheme:
                self.solver_rot = LUSolver('mumps')
        else:
            # NT 2016-1  KrylovSolver >> PETScKrylovSolver

            # not needed, chosen not to use hypre_parasails:
            # if self.prec_v == 'hypre_parasails':  # in FEniCS 1.6.0 inaccessible using KrylovSolver class
            #     self.solver_vel_tent = PETScKrylovSolver('gmres')   # PETSc4py object
            #     self.solver_vel_tent.ksp().getPC().setType('hypre')
            #     PETScOptions.set('pc_hypre_type', 'parasails')
            #     # this is global setting, but preconditioners for pressure solvers are set by their constructors
            # else:
            self.solver_vel_tent = PETScKrylovSolver('gmres', self.args.precV)  # nonsymetric > gmres
            # cannot use 'ilu' in parallel
            self.solver_vel_cor = PETScKrylovSolver('cg', self.args.precVC)
            self.solver_p = PETScKrylovSolver(self.args.solP, self.args.precP)  # almost (up to BC) symmetric > CG
            if self.useRotationScheme:
                self.solver_rot = PETScKrylovSolver('cg', 'hypre_amg')

        # setup Krylov solvers
        if self.solvers == 'krylov':
            # Get the nullspace if there are no pressure boundary conditions
            foo = Function(self.Q)  # auxiliary vector for setting pressure nullspace
            if self.args.bc == 'nullspace':
                null_vec = Vector(foo.vector())
                self.Q.dofmap().set(null_vec, 1.0)
                null_vec *= 1.0 / null_vec.norm('l2')
                self.null_space = VectorSpaceBasis([null_vec])
                as_backend_type(A2).set_nullspace(self.null_space)

            # apply global options for Krylov solvers
            solver_options = {'monitor_convergence': True, 'maximum_iterations': 10000, 'nonzero_initial_guess': True}
            # 'nonzero_initial_guess': True   with  solver.solve(A, u, b) means that
            # Solver will use anything stored in u as an initial guess
            for solver in [self.solver_vel_tent, self.solver_vel_cor, self.solver_rot, self.solver_p] if \
                    self.useRotationScheme else [self.solver_vel_tent, self.solver_vel_cor, self.solver_p]:
                for key, value in solver_options.items():
                    try:
                        solver.parameters[key] = value
                    except KeyError:
                        info('Invalid option %s for KrylovSolver' % key)
                        return 1

            if self.args.solP == 'richardson':
                self.solver_p.parameters['monitor_convergence'] = False

            self.solver_vel_tent.parameters['relative_tolerance'] = 10 ** (-self.args.prv1)
            self.solver_vel_tent.parameters['absolute_tolerance'] = 10 ** (-self.args.pav1)
            self.solver_vel_cor.parameters['relative_tolerance'] = 10E-12
            self.solver_vel_cor.parameters['absolute_tolerance'] = 10E-4
            self.solver_p.parameters['relative_tolerance'] = 10 ** (-self.args.prp)
            self.solver_p.parameters['absolute_tolerance'] = 10 ** (-self.args.pap)
            if self.useRotationScheme:
                self.solver_rot.parameters['relative_tolerance'] = 10E-10
                self.solver_rot.parameters['absolute_tolerance'] = 10E-10

            if self.args.Vrestart > 0:
                self.solver_vel_tent.parameters['gmres']['restart'] = self.args.Vrestart

            if self.args.solP == 'gmres' and self.args.Prestart > 0:
                self.solver_p.parameters['gmres']['restart'] = self.args.Prestart

        # boundary conditions
        bcu, bcp = problem.get_boundary_conditions(self.args.bc == 'outflow', self.V, self.Q)
        self.tc.end('init')
        # Time-stepping
        info("Running of Incremental pressure correction scheme n. 1")
        ttime = self.metadata['time']
        t = dt
        step = 1

        # debug function
        if problem.args.debug_rot:
            plot_cor_v = Function(self.V)

        while t < (ttime + dt / 2.0):
            self.problem.update_time(t, step)
            if self.MPI_rank == 0:
                problem.write_status_file(t)

            if doSave:
                save_this_step = problem.save_this_step

            # assemble matrix (it depends on solution)
            self.tc.start('assembleA1')
            assemble(a1_change, tensor=A1_change)  # assembling into existing matrix is faster than assembling new one
            A1 = A1_const.copy()  # we dont want to change A1_const
            A1.axpy(1, A1_change, True)
            self.tc.end('assembleA1')
            self.tc.start('assembleA1stab')
            if self.stabilize and not self.use_full_SUPG:
                assemble(a1_stab, tensor=A1_stab)  # assembling into existing matrix is faster than assembling new one
                A1.axpy(1, A1_stab, True)
            self.tc.end('assembleA1stab')

            # Compute tentative velocity step
            begin("Computing tentative velocity")
            self.tc.start('rhs')
            b = assemble(L1)
            self.tc.end('rhs')
            self.tc.start('applybc1')
            [bc.apply(A1, b) for bc in bcu]
            self.tc.end('applybc1')
            try:
                self.tc.start('solve 1')
                self.solver_vel_tent.solve(A1, u_.vector(), b)
                self.tc.end('solve 1')
                if save_this_step:
                    self.tc.start('saveVel')
                    problem.save_vel(True, u_)
                    self.tc.end('saveVel')
                if save_this_step and not onlyVel:
                    problem.save_div(True, u_)
                problem.compute_err(True, u_, t)
                problem.compute_div(True, u_)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            end()

            if self.useRotationScheme:
                begin("Computing tentative pressure")
            else:
                begin("Computing pressure")
            if self.forceOutflow and problem.can_force_outflow:
                out = problem.compute_outflow(u_)
                info('Tentative outflow: %f' % out)
                n_o = -problem.last_inflow - out
                info('Needed outflow: %f' % n_o)
                need_outflow.assign(n_o)
            self.tc.start('rhs')
            b = assemble(L2)
            self.tc.end('rhs')
            self.tc.start('applybcP')
            [bc.apply(A2, b) for bc in bcp]
            if self.args.bc == 'nullspace':
                self.null_space.orthogonalize(b)
            self.tc.end('applybcP')
            try:
                self.tc.start('solve 2')
                self.solver_p.solve(A2, p_.vector(), b)
                self.tc.end('solve 2')
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if self.useRotationScheme:
                foo = Function(self.Q)
                foo.assign(p_ + p0)
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(True, foo)
            else:
                foo = Function(self.Q)
                foo.assign(p_)  # we do not want to change p_ by averaging
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(False, foo)
            end()

            begin("Computing corrected velocity")
            self.tc.start('rhs')
            b = assemble(L3)
            self.tc.end('rhs')
            if not self.args.B:
                self.tc.start('applybc3')
                [bc.apply(A3, b) for bc in bcu]
                self.tc.end('applybc3')
            try:
                self.tc.start('solve 3')
                self.solver_vel_cor.solve(A3, u_cor.vector(), b)
                self.tc.end('solve 3')
                problem.compute_err(False, u_cor, t)
                problem.compute_div(False, u_cor)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if save_this_step:
                self.tc.start('saveVel')
                problem.save_vel(False, u_cor)
                self.tc.end('saveVel')
            if save_this_step and not onlyVel:
                problem.save_div(False, u_cor)
            end()

            if self.useRotationScheme:
                begin("Rotation scheme pressure correction")
                self.tc.start('rhs')
                b = assemble(L4)
                self.tc.end('rhs')
                try:
                    self.tc.start('solve 4')
                    self.solver_rot.solve(A4, p_mod.vector(), b)
                    self.tc.end('solve 4')
                except RuntimeError as inst:
                    problem.report_fail(t)
                    return 1
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(p_mod)
                    problem.save_pressure(False, p_mod)
                end()

                if problem.args.debug_rot:
                    # save applied pressure correction (expressed as a term added to RHS of next tentative vel. step)
                    # see comment next to argument definition
                    plot_cor_v.assign(project(k * grad(nu * div(u_)), self.V))
                    problem.fileDict['grad_cor']['file'].write(plot_cor_v, t)

            # compute functionals (e. g. forces)
            problem.compute_functionals(u_cor, p_mod if self.useRotationScheme else p_, t, step)

            # Move to next time step
            self.tc.start('next')
            u1.assign(u0)
            u0.assign(u_cor)
            u_.assign(u_cor)  # use corrected velocity as initial guess in first step

            if self.useRotationScheme:
                p0.assign(p_mod)
            else:
                p0.assign(p_)

            t = round(t + dt, 6)  # round time step to 0.000001
            step += 1
            self.tc.end('next')

        info("Finished: Incremental pressure correction scheme n. 1")
        problem.report()
        return 0
Esempio n. 30
0
def compute(space, epsilon, weakBnd, skeleton, mol=None):
    u = TrialFunction(space)
    v = TestFunction(space)
    n = FacetNormal(space)
    he = avg(CellVolume(space)) / FacetArea(space)
    hbnd = CellVolume(space) / FacetArea(space)
    x = SpatialCoordinate(space)

    exact = uflFunction(space.gridView,
                        name="exact",
                        order=3,
                        ufl=sin(x[0] * x[1]))
    uh = space.interpolate(exact, name="solution")

    # diffusion factor
    eps = Constant(epsilon, "eps")
    # transport direction and upwind flux
    b = as_vector([1, 0])
    hatb = (dot(b, n) + abs(dot(b, n))) / 2.0
    # characteristic function for left/right boundary
    dD = conditional((1 + x[0]) * (1 - x[0]) < 1e-10, 1, 0)
    # penalty parameter
    beta = Constant(20 * space.order**2, "beta")

    rhs = -(div(eps * grad(exact) - b * exact)) * v * dx
    aInternal = dot(eps * grad(u) - b * u, grad(v)) * dx
    aInternal -= eps * dot(grad(exact), n) * v * (1 - dD) * ds

    diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                    eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                    eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
    if weakBnd:
        diffSkeleton += eps*beta/hbnd*(u-exact)*v*dD*ds -\
                        eps*dot(grad(exact),n)*v*dD*ds
    advSkeleton = jump(hatb * u) * jump(v) * dS
    if weakBnd:
        advSkeleton += (hatb * u + (dot(b, n) - hatb) * exact) * v * dD * ds

    if skeleton:
        form = aInternal + diffSkeleton + advSkeleton
    else:
        form = aInternal

    if weakBnd and skeleton:
        strongBC = None
    else:
        strongBC = DirichletBC(space, exact, dD)

    if space.storage[0] == "numpy":
        solver = {
            "solver": ("suitesparse", "umfpack"),
            "parameters": {
                "newton.verbose": True,
                "newton.linear.verbose": False,
                "newton.linear.tolerance": 1e-5,
            }
        }
    else:
        solver = {
            "solver": "bicgstab",
            "parameters": {
                "newton.linear.preconditioning.method": "ilu",
                "newton.linear.tolerance": 1e-13,
                "newton.verbose": True,
                "newton.linear.verbose": False
            }
        }
    if mol == 'mol':
        scheme = molSolutionScheme([form == rhs, strongBC], **solver)
    else:
        scheme = solutionScheme([form == rhs, strongBC], **solver)

    eoc = []
    info = scheme.solve(target=uh)

    error = dot(uh - exact, uh - exact)
    error0 = math.sqrt(integrate(gridView, error, order=5))
    print(error0, " # output", flush=True)
    for i in range(3):
        gridView.hierarchicalGrid.globalRefine(1)
        uh.interpolate(exact)
        scheme.solve(target=uh)
        error = dot(uh - exact, uh - exact)
        error1 = math.sqrt(integrate(gridView, error, order=5))
        eoc += [math.log(error1 / error0) / math.log(0.5)]
        print(i, error0, error1, eoc, " # output", flush=True)
        error0 = error1

    # print(space.order,epsilon,eoc)
    if (eoc[-1] - (space.order + 1)) < -0.1:
        print("ERROR:", space.order, epsilon, eoc)
    return eoc
Esempio n. 31
0
def norm(v, norm_type="L2", mesh=None):
    """
    Return the norm of a given vector or function.

    *Arguments*
        v
            a :py:class:`Vector <dolfin.cpp.Vector>` or
            a :py:class:`Function <dolfin.functions.function.Function>`.
        norm_type
            see below for alternatives.
        mesh
            optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the norm.

    If the norm type is not specified, the standard :math:`L^2` -norm
    is computed. Possible norm types include:

    *Vectors*

    ================   =================  ================
    Norm               Usage
    ================   =================  ================
    :math:`l^2`        norm(x, 'l2')      Default
    :math:`l^1`        norm(x, 'l1')
    :math:`l^\infty`   norm(x, 'linf')
    ================   =================  ================

    *Functions*

    ================  =================  =================================
    Norm              Usage              Includes the :math:`L^2` -term
    ================  =================  =================================
    :math:`L^2`       norm(v, 'L2')      Yes
    :math:`H^1`       norm(v, 'H1')      Yes
    :math:`H^1_0`     norm(v, 'H10')     No
    :math:`H` (div)   norm(v, 'Hdiv')    Yes
    :math:`H` (div)   norm(v, 'Hdiv0')   No
    :math:`H` (curl)  norm(v, 'Hcurl')   Yes
    :math:`H` (curl)  norm(v, 'Hcurl0')  No
    ================  =================  =================================

    *Examples of usage*

    .. code-block:: python

        v = Function(V)
        x = v.vector()

        print norm(x, 'linf')   # print the infinity norm of vector x

        n = norm(v)             # compute L^2 norm of v
        print norm(v, 'Hdiv')   # print H(div) norm of v
        n = norm(v, 'H1', mesh) # compute H^1 norm of v on given mesh

    """

    # if not isinstance(v, (GenericVector, GenericFunction)):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "expected a GenericVector or GenericFunction")

    # Check arguments
    # if not isinstance(norm_type, string_types):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Norm type must be a string, not " +
    #                      str(type(norm_type)))
    # if mesh is not None and not isinstance(mesh, cpp.Mesh):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Expecting a Mesh, not " + str(type(mesh)))

    # Get mesh from function
    if isinstance(v, cpp.function.Function) and mesh is None:
        mesh = v.function_space().mesh()
    elif isinstance(v, MultiMeshFunction) and mesh is None:
        mesh = v.function_space().multimesh()

    # Define integration measure and domain
    if isinstance(v, MultiMeshFunction):
        dc = ufl.dx(mesh) + ufl.dC(mesh)
        assemble_func = functools.partial(assemble_multimesh, form_compiler_parameters={"representation": "quadrature"})
    else:
        dc = ufl.dx(mesh)
        assemble_func = assemble
    # Select norm type
    if isinstance(v, cpp.la.GenericVector):
        return v.norm(norm_type.lower())

    elif isinstance(v, ufl.Coefficient):
        if norm_type.lower() == "l2":
            M = v**2 * dc
        elif norm_type.lower() == "h1":
            M = (v**2 + grad(v)**2) * dc
        elif norm_type.lower() == "h10":
            M = grad(v)**2 * dc
        elif norm_type.lower() == "hdiv":
            M = (v**2 + div(v)**2) * dc
        elif norm_type.lower() == "hdiv0":
            M = div(v)**2 * dc
        elif norm_type.lower() == "hcurl":
            M = (v**2 + curl(v)**2) * dc
        elif norm_type.lower() == "hcurl0":
            M = curl(v)**2 * dc
        else:
            raise ValueError("Unknown norm type {}".format(str(norm_type)))
    else:
        raise TypeError("Do not know how to compute norm of {}".format(str(v)))

    # Assemble value and return
    return sqrt(assemble_func(M))
Esempio n. 32
0
def norm(v, norm_type="L2", mesh=None):
    r"""
    Return the norm of a given vector or function.

    *Arguments*
        v
            a :py:class:`Vector <dolfin.cpp.Vector>` or
            a :py:class:`Function <dolfin.functions.function.Function>`.
        norm_type
            see below for alternatives.
        mesh
            optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the norm.

    If the norm type is not specified, the standard :math:`L^2` -norm
    is computed. Possible norm types include:

    *Vectors*

    ================   =================  ================
    Norm               Usage
    ================   =================  ================
    :math:`l^2`        norm(x, 'l2')      Default
    :math:`l^1`        norm(x, 'l1')
    :math:`l^\infty`   norm(x, 'linf')
    ================   =================  ================

    *Functions*

    ================  =================  =================================
    Norm              Usage              Includes the :math:`L^2` -term
    ================  =================  =================================
    :math:`L^2`       norm(v, 'L2')      Yes
    :math:`H^1`       norm(v, 'H1')      Yes
    :math:`H^1_0`     norm(v, 'H10')     No
    :math:`H` (div)   norm(v, 'Hdiv')    Yes
    :math:`H` (div)   norm(v, 'Hdiv0')   No
    :math:`H` (curl)  norm(v, 'Hcurl')   Yes
    :math:`H` (curl)  norm(v, 'Hcurl0')  No
    ================  =================  =================================

    *Examples of usage*

    .. code-block:: python

        v = Function(V)
        x = v.vector()

        print norm(x, 'linf')   # print the infinity norm of vector x

        n = norm(v)             # compute L^2 norm of v
        print norm(v, 'Hdiv')   # print H(div) norm of v
        n = norm(v, 'H1', mesh) # compute H^1 norm of v on given mesh

    """

    # if not isinstance(v, (GenericVector, GenericFunction)):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "expected a GenericVector or GenericFunction")

    # Check arguments
    # if not isinstance(norm_type, string_types):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Norm type must be a string, not " +
    #                      str(type(norm_type)))
    # if mesh is not None and not isinstance(mesh, cpp.Mesh):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Expecting a Mesh, not " + str(type(mesh)))

    # Get mesh from function
    if isinstance(v, cpp.function.Function) and mesh is None:
        mesh = v.function_space().mesh()
    elif isinstance(v, MultiMeshFunction) and mesh is None:
        mesh = v.function_space().multimesh()

    # Define integration measure and domain
    if isinstance(v, MultiMeshFunction):
        dc = ufl.dx(mesh) + ufl.dC(mesh)
        assemble_func = functools.partial(assemble_multimesh, form_compiler_parameters={"representation": "quadrature"})
    else:
        dc = ufl.dx(mesh)
        assemble_func = assemble
    # Select norm type
    if isinstance(v, cpp.la.GenericVector):
        return v.norm(norm_type.lower())

    elif isinstance(v, ufl.Coefficient):
        if norm_type.lower() == "l2":
            M = v**2 * dc
        elif norm_type.lower() == "h1":
            M = (v**2 + grad(v)**2) * dc
        elif norm_type.lower() == "h10":
            M = grad(v)**2 * dc
        elif norm_type.lower() == "hdiv":
            M = (v**2 + div(v)**2) * dc
        elif norm_type.lower() == "hdiv0":
            M = div(v)**2 * dc
        elif norm_type.lower() == "hcurl":
            M = (v**2 + curl(v)**2) * dc
        elif norm_type.lower() == "hcurl0":
            M = curl(v)**2 * dc
        else:
            raise ValueError("Unknown norm type {}".format(str(norm_type)))
    else:
        raise TypeError("Do not know how to compute norm of {}".format(str(v)))

    # Assemble value and return
    return sqrt(assemble_func(M))
Esempio n. 33
0
    def solve(self, problem):
        self.problem = problem
        doSave = problem.doSave
        save_this_step = False
        onlyVel = problem.saveOnlyVel
        dt = self.metadata['dt']

        nu = Constant(self.problem.nu)
        # TODO check proper use of watches
        self.tc.init_watch('init', 'Initialization', True, count_to_percent=False)
        self.tc.init_watch('rhs', 'Assembled right hand side', True, count_to_percent=True)
        self.tc.init_watch('updateBC', 'Updated velocity BC', True, count_to_percent=True)
        self.tc.init_watch('applybc1', 'Applied velocity BC 1st step', True, count_to_percent=True)
        self.tc.init_watch('applybc3', 'Applied velocity BC 3rd step', True, count_to_percent=True)
        self.tc.init_watch('applybcP', 'Applied pressure BC or othogonalized rhs', True, count_to_percent=True)
        self.tc.init_watch('assembleMatrices', 'Initial matrix assembly', False, count_to_percent=True)
        self.tc.init_watch('solve 1', 'Running solver on 1st step', True, count_to_percent=True)
        self.tc.init_watch('solve 2', 'Running solver on 2nd step', True, count_to_percent=True)
        self.tc.init_watch('solve 3', 'Running solver on 3rd step', True, count_to_percent=True)
        self.tc.init_watch('solve 4', 'Running solver on 4th step', True, count_to_percent=True)
        self.tc.init_watch('assembleA1', 'Assembled A1 matrix (without stabiliz.)', True, count_to_percent=True)
        self.tc.init_watch('assembleA1stab', 'Assembled A1 stabilization', True, count_to_percent=True)
        self.tc.init_watch('next', 'Next step assignments', True, count_to_percent=True)
        self.tc.init_watch('saveVel', 'Saved velocity', True)

        self.tc.start('init')

        # Define function spaces (P2-P1)
        mesh = self.problem.mesh
        self.V = VectorFunctionSpace(mesh, "Lagrange", 2)  # velocity
        self.Q = FunctionSpace(mesh, "Lagrange", 1)  # pressure
        self.PS = FunctionSpace(mesh, "Lagrange", 2)  # partial solution (must be same order as V)
        self.D = FunctionSpace(mesh, "Lagrange", 1)   # velocity divergence space
        if self.bc == 'lagrange':
            L = FunctionSpace(mesh, "R", 0)
            QL = self.Q*L

        problem.initialize(self.V, self.Q, self.PS, self.D)

        # Define trial and test functions
        u = TrialFunction(self.V)
        v = TestFunction(self.V)
        if self.bc == 'lagrange':
            (pQL, rQL) = TrialFunction(QL)
            (qQL, lQL) = TestFunction(QL)
        else:
            p = TrialFunction(self.Q)
            q = TestFunction(self.Q)

        n = FacetNormal(mesh)
        I = Identity(u.geometric_dimension())

        # Initial conditions: u0 velocity at previous time step u1 velocity two time steps back p0 previous pressure
        [u1, u0, p0] = self.problem.get_initial_conditions([{'type': 'v', 'time': -dt},
                                                          {'type': 'v', 'time': 0.0},
                                                          {'type': 'p', 'time': 0.0}])

        if doSave:
            problem.save_vel(False, u0, 0.0)
            problem.save_vel(True, u0, 0.0)

        u_ = Function(self.V)         # current tentative velocity
        u_cor = Function(self.V)         # current corrected velocity
        if self.bc == 'lagrange':
            p_QL = Function(QL)    # current pressure or pressure help function from rotation scheme
            pQ = Function(self.Q)     # auxiliary function for conversion between QL.sub(0) and Q
        else:
            p_ = Function(self.Q)         # current pressure or pressure help function from rotation scheme
        p_mod = Function(self.Q)      # current modified pressure from rotation scheme

        # Define coefficients
        k = Constant(self.metadata['dt'])
        f = Constant((0, 0, 0))

        # Define forms
        # step 1: Tentative velocity, solve to u_
        u_ext = 1.5*u0 - 0.5*u1  # extrapolation for convection term

        # Stabilisation
        h = CellSize(mesh)
        # CBC delta:
        if self.cbcDelta:
            delta = Constant(self.stabCoef)*h/(sqrt(inner(u_ext, u_ext))+h)
        else:
            delta = Constant(self.stabCoef)*h**2/(2*nu*k + k*h*inner(u_ext, u_ext)+h**2)

        if self.use_full_SUPG:
            v1 = v + delta*0.5*k*dot(grad(v), u_ext)
            parameters['form_compiler']['quadrature_degree'] = 6
        else:
            v1 = v

        def nonlinearity(function):
            if self.use_ema:
               return 2*inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function)*u_ext, v1) * dx
                # return 2*inner(dot(sym(grad(function)), u_ext), v) * dx + inner(div(u_ext)*function, v) * dx
                # QQ implement this way?
            else:
                return inner(dot(grad(function), u_ext), v1) * dx

        def diffusion(fce):
            if self.useLaplace:
                return nu*inner(grad(fce), grad(v1)) * dx
            else:
                form = inner(nu * 2 * sym(grad(fce)), sym(grad(v1))) * dx
                if self.bcv == 'CDN':
                    # IMP will work only if p=0 on output, or we must add term
                    # inner(p0*n, v)*problem.get_outflow_measure_form() to avoid boundary layer
                    return form
                if self.bcv == 'LAP':
                    return form - inner(nu*dot(grad(fce).T, n), v1)  * problem.get_outflow_measure_form()
                if self.bcv == 'DDN':
                    # IMP will work only if p=0 on output, or we must add term
                    # inner(p0*n, v)*problem.get_outflow_measure_form() to avoid boundary layer
                    return form  # additional term must be added to non-constant part

        def pressure_rhs():
            if self.useLaplace or self.bcv == 'LAP':
                return inner(p0, div(v1)) * dx - inner(p0*n, v1) * problem.get_outflow_measure_form()
                # NT term inner(inner(p, n), v) is 0 when p=0 on outflow
            else:
                return inner(p0, div(v1)) * dx

        a1_const = (1./k)*inner(u, v1)*dx + diffusion(0.5*u)
        a1_change = nonlinearity(0.5*u)
        if self.bcv == 'DDN':
            # IMP Problem: Does not penalize influx for current step, only for the next one
            # IMP this can lead to oscilation: DDN correct next step, but then u_ext is OK so in next step DDN is not used, leading to new influx...
            # u and u_ext cannot be switched, min_value is nonlinear function
            a1_change += -0.5*min_value(Constant(0.), inner(u_ext, n))*inner(u, v1)*problem.get_outflow_measure_form()
            # IMP works only with uflacs compiler

        L1 = (1./k)*inner(u0, v1)*dx - nonlinearity(0.5*u0) - diffusion(0.5*u0) + pressure_rhs()
        if self.bcv == 'DDN':
            L1 += 0.5*min_value(0., inner(u_ext, n))*inner(u0, v1)*problem.get_outflow_measure_form()

        # Non-consistent SUPG stabilisation
        if self.stabilize and not self.use_full_SUPG:
            # a1_stab = delta*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx
            a1_stab = 0.5*delta*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})
            # NT optional: use Crank Nicolson in stabilisation term: change RHS
            # L1 += -0.5*delta*inner(dot(grad(u0), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})

        outflow_area = Constant(problem.outflow_area)
        need_outflow = Constant(0.0)
        if self.useRotationScheme:
            # Rotation scheme
            if self.bc == 'lagrange':
                F2 = inner(grad(pQL), grad(qQL))*dx + (1./k)*qQL*div(u_)*dx + pQL*lQL*dx + qQL*rQL*dx
            else:
                F2 = inner(grad(p), grad(q))*dx + (1./k)*q*div(u_)*dx
        else:
            # Projection, solve to p_
            if self.bc == 'lagrange':
                F2 = inner(grad(pQL - p0), grad(qQL))*dx + (1./k)*qQL*div(u_)*dx + pQL*lQL*dx + qQL*rQL*dx
            else:
                if self.forceOutflow and problem.can_force_outflow:
                    info('Forcing outflow.')
                    F2 = inner(grad(p - p0), grad(q))*dx + (1./k)*q*div(u_)*dx
                    for m in problem.get_outflow_measures():
                        F2 += (1./k)*(1./outflow_area)*need_outflow*q*m
                else:
                    F2 = inner(grad(p - p0), grad(q))*dx + (1./k)*q*div(u_)*dx
        a2, L2 = system(F2)

        # step 3: Finalize, solve to u_
        if self.useRotationScheme:
            # Rotation scheme
            if self.bc == 'lagrange':
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_QL.sub(0)), v)*dx
            else:
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_), v)*dx
        else:
            if self.bc == 'lagrange':
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_QL.sub(0) - p0), v)*dx
            else:
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_ - p0), v)*dx
        a3, L3 = system(F3)

        if self.useRotationScheme:
            # Rotation scheme: modify pressure
            if self.bc == 'lagrange':
                pr = TrialFunction(self.Q)
                qr = TestFunction(self.Q)
                F4 = (pr - p0 - p_QL.sub(0) + nu*div(u_))*qr*dx
            else:
                F4 = (p - p0 - p_ + nu*div(u_))*q*dx
            # TODO zkusit, jestli to nebude rychlejsi? nepocitat soustavu, ale p.assign(...), nutno project(div(u),Q) coz je pocitani podobne soustavy
            # TODO zkusit v project zadat solver_type='lu' >> primy resic by mel byt efektivnejsi
            a4, L4 = system(F4)

        # Assemble matrices
        self.tc.start('assembleMatrices')
        A1_const = assemble(a1_const)  # need to be here, so A1 stays one Python object during repeated assembly
        A1_change = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwriten)
        if self.stabilize and not self.use_full_SUPG:
            A1_stab = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwriten)
        A2 = assemble(a2)
        A3 = assemble(a3)
        if self.useRotationScheme:
            A4 = assemble(a4)
        self.tc.end('assembleMatrices')

        if self.solvers == 'direct':
            self.solver_vel_tent = LUSolver('mumps')
            self.solver_vel_cor = LUSolver('mumps')
            self.solver_p = LUSolver('umfpack')
            if self.useRotationScheme:
                self.solver_rot = LUSolver('umfpack')
        else:
            # NT not needed, chosen not to use hypre_parasails
            # if self.prec_v == 'hypre_parasails':  # in FEniCS 1.6.0 inaccessible using KrylovSolver class
            #     self.solver_vel_tent = PETScKrylovSolver('gmres')   # PETSc4py object
            #     self.solver_vel_tent.ksp().getPC().setType('hypre')
            #     PETScOptions.set('pc_hypre_type', 'parasails')
            #     # this is global setting, but preconditioners for pressure solvers are set by their constructors
            # else:
            self.solver_vel_tent = KrylovSolver('gmres', self.prec_v)   # nonsymetric > gmres
            # IMP cannot use 'ilu' in parallel (choose different default option)
            self.solver_vel_cor = KrylovSolver('cg', 'hypre_amg')   # nonsymetric > gmres
            self.solver_p = KrylovSolver('cg', self.prec_p)          # symmetric > CG
            if self.useRotationScheme:
                self.solver_rot = KrylovSolver('cg', self.prec_p)

        solver_options = {'monitor_convergence': True, 'maximum_iterations': 1000, 'nonzero_initial_guess': True}
        # 'nonzero_initial_guess': True   with  solver.solbe(A, u, b) means that
        # Solver will use anything stored in u as an initial guess

        # Get the nullspace if there are no pressure boundary conditions
        foo = Function(self.Q)     # auxiliary vector for setting pressure nullspace
        if self.bc in ['nullspace', 'nullspace_s']:
            null_vec = Vector(foo.vector())
            self.Q.dofmap().set(null_vec, 1.0)
            null_vec *= 1.0/null_vec.norm('l2')
            self.null_space = VectorSpaceBasis([null_vec])
            if self.bc == 'nullspace':
                as_backend_type(A2).set_nullspace(self.null_space)

        # apply global options for Krylov solvers
        self.solver_vel_tent.parameters['relative_tolerance'] = 10 ** (-self.precision_rel_v_tent)
        self.solver_vel_tent.parameters['absolute_tolerance'] = 10 ** (-self.precision_abs_v_tent)
        self.solver_vel_cor.parameters['relative_tolerance'] = 10E-12
        self.solver_vel_cor.parameters['absolute_tolerance'] = 10E-4
        self.solver_p.parameters['relative_tolerance'] = 10**(-self.precision_p)
        self.solver_p.parameters['absolute_tolerance'] = 10E-10
        if self.useRotationScheme:
            self.solver_rot.parameters['relative_tolerance'] = 10**(-self.precision_p)
            self.solver_rot.parameters['absolute_tolerance'] = 10E-10

        if self.solvers == 'krylov':
            for solver in [self.solver_vel_tent, self.solver_vel_cor, self.solver_p, self.solver_rot] if \
                    self.useRotationScheme else [self.solver_vel_tent, self.solver_vel_cor, self.solver_p]:
                for key, value in solver_options.items():
                    try:
                        solver.parameters[key] = value
                    except KeyError:
                        info('Invalid option %s for KrylovSolver' % key)
                        return 1
                solver.parameters['preconditioner']['structure'] = 'same'
                # matrices A2-A4 do not change, so we can reuse preconditioners

        self.solver_vel_tent.parameters['preconditioner']['structure'] = 'same_nonzero_pattern'
        # matrix A1 changes every time step, so change of preconditioner must be allowed

        if self.bc == 'lagrange':
            fa = FunctionAssigner(self.Q, QL.sub(0))

        # boundary conditions
        bcu, bcp = problem.get_boundary_conditions(self.bc == 'outflow', self.V, self.Q)
        self.tc.end('init')
        # Time-stepping
        info("Running of Incremental pressure correction scheme n. 1")
        ttime = self.metadata['time']
        t = dt
        step = 1
        while t < (ttime + dt/2.0):
            info("t = %f" % t)
            self.problem.update_time(t, step)
            if self.MPI_rank == 0:
                problem.write_status_file(t)

            if doSave:
                save_this_step = problem.save_this_step

            # DDN debug
            # u_ext_in = assemble(inner(u_ext, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_ext, n))*problem.get_outflow_measure_form())
            # print('DDN: u_ext*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_ext*n dSout = ', DDN_triggered)

            # assemble matrix (it depends on solution)
            self.tc.start('assembleA1')
            assemble(a1_change, tensor=A1_change)  # assembling into existing matrix is faster than assembling new one
            A1 = A1_const.copy()  # we dont want to change A1_const
            A1.axpy(1, A1_change, True)
            self.tc.end('assembleA1')
            self.tc.start('assembleA1stab')
            if self.stabilize and not self.use_full_SUPG:
                assemble(a1_stab, tensor=A1_stab)  # assembling into existing matrix is faster than assembling new one
                A1.axpy(1, A1_stab, True)
            self.tc.end('assembleA1stab')

            # Compute tentative velocity step
            begin("Computing tentative velocity")
            self.tc.start('rhs')
            b = assemble(L1)
            self.tc.end('rhs')
            self.tc.start('applybc1')
            [bc.apply(A1, b) for bc in bcu]
            self.tc.end('applybc1')
            try:
                self.tc.start('solve 1')
                self.solver_vel_tent.solve(A1, u_.vector(), b)
                self.tc.end('solve 1')
                if save_this_step:
                    self.tc.start('saveVel')
                    problem.save_vel(True, u_, t)
                    self.tc.end('saveVel')
                if save_this_step and not onlyVel:
                    problem.save_div(True, u_)
                problem.compute_err(True, u_, t)
                problem.compute_div(True, u_)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            end()

            # DDN debug
            # u_ext_in = assemble(inner(u_, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_, n))*problem.get_outflow_measure_form())
            # print('DDN: u_tent*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_tent*n dSout = ', DDN_triggered)

            if self.useRotationScheme:
                begin("Computing tentative pressure")
            else:
                begin("Computing pressure")
            if self.forceOutflow and problem.can_force_outflow:
                out = problem.compute_outflow(u_)
                info('Tentative outflow: %f' % out)
                n_o = -problem.last_inflow-out
                info('Needed outflow: %f' % n_o)
                need_outflow.assign(n_o)
            self.tc.start('rhs')
            b = assemble(L2)
            self.tc.end('rhs')
            self.tc.start('applybcP')
            [bc.apply(A2, b) for bc in bcp]
            if self.bc in ['nullspace', 'nullspace_s']:
                self.null_space.orthogonalize(b)
            self.tc.end('applybcP')
            try:
                self.tc.start('solve 2')
                if self.bc == 'lagrange':
                    self.solver_p.solve(A2, p_QL.vector(), b)
                else:
                    self.solver_p.solve(A2, p_.vector(), b)
                self.tc.end('solve 2')
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if self.useRotationScheme:
                foo = Function(self.Q)
                if self.bc == 'lagrange':
                    fa.assign(pQ, p_QL.sub(0))
                    foo.assign(pQ + p0)
                else:
                    foo.assign(p_+p0)
                problem.averaging_pressure(foo)
                if save_this_step and not onlyVel:
                    problem.save_pressure(True, foo)
            else:
                if self.bc == 'lagrange':
                    fa.assign(pQ, p_QL.sub(0))
                    problem.averaging_pressure(pQ)
                    if save_this_step and not onlyVel:
                        problem.save_pressure(False, pQ)
                else:
                    # we do not want to change p=0 on outflow, it conflicts with do-nothing conditions
                    foo = Function(self.Q)
                    foo.assign(p_)
                    problem.averaging_pressure(foo)
                    if save_this_step and not onlyVel:
                        problem.save_pressure(False, foo)
            end()

            begin("Computing corrected velocity")
            self.tc.start('rhs')
            b = assemble(L3)
            self.tc.end('rhs')
            if not self.B:
                self.tc.start('applybc3')
                [bc.apply(A3, b) for bc in bcu]
                self.tc.end('applybc3')
            try:
                self.tc.start('solve 3')
                self.solver_vel_cor.solve(A3, u_cor.vector(), b)
                self.tc.end('solve 3')
                problem.compute_err(False, u_cor, t)
                problem.compute_div(False, u_cor)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if save_this_step:
                self.tc.start('saveVel')
                problem.save_vel(False, u_cor, t)
                self.tc.end('saveVel')
            if save_this_step and not onlyVel:
                problem.save_div(False, u_cor)
            end()

            # DDN debug
            # u_ext_in = assemble(inner(u_cor, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_cor, n))*problem.get_outflow_measure_form())
            # print('DDN: u_cor*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_cor*n dSout = ', DDN_triggered)

            if self.useRotationScheme:
                begin("Rotation scheme pressure correction")
                self.tc.start('rhs')
                b = assemble(L4)
                self.tc.end('rhs')
                try:
                    self.tc.start('solve 4')
                    self.solver_rot.solve(A4, p_mod.vector(), b)
                    self.tc.end('solve 4')
                except RuntimeError as inst:
                    problem.report_fail(t)
                    return 1
                problem.averaging_pressure(p_mod)
                if save_this_step and not onlyVel:
                    problem.save_pressure(False, p_mod)
                end()

            # compute functionals (e. g. forces)
            problem.compute_functionals(u_cor,
                                        p_mod if self.useRotationScheme else (pQ if self.bc == 'lagrange' else p_), t)

            # Move to next time step
            self.tc.start('next')
            u1.assign(u0)
            u0.assign(u_cor)
            u_.assign(u_cor)  # use corretced velocity as initial guess in first step

            if self.useRotationScheme:
                p0.assign(p_mod)
            else:
                if self.bc == 'lagrange':
                    p0.assign(pQ)
                else:
                    p0.assign(p_)

            t = round(t + dt, 6)  # round time step to 0.000001
            step += 1
            self.tc.end('next')

        info("Finished: Incremental pressure correction scheme n. 1")
        problem.report()
        return 0
Esempio n. 34
0
def solve_navier_stokes_equation(interior_circle=True, num_mesh_refinements=0):
    """
    Solve the Navier-Stokes equation on a hard-coded mesh with hard-coded initial and boundary conditions
    """
    mesh, om, im, nm, ymax, sub_domains = setup_geometry(
        interior_circle, num_mesh_refinements)
    dsi = Measure("ds", domain=mesh, subdomain_data=sub_domains)

    # Setup FEM function spaces
    # Function space for the velocity
    V = VectorFunctionSpace(mesh, "CG", 1)
    # Function space for the pressure
    Q = FunctionSpace(mesh, "CG", 1)
    # Mixed function space for velocity and pressure
    W = V * Q

    # Setup FEM functions
    v, q = TestFunctions(W)
    w = Function(W)
    (u, p) = (as_vector((w[0], w[1])), w[2])
    u0 = Function(V)

    # Inlet velocity
    uin = Expression(("4*(x[1]*(YMAX-x[1]))/(YMAX*YMAX)", "0."),
                     YMAX=ymax,
                     degree=1)

    # Viscosity and stabilization parameters
    nu = 1e-6
    h = CellSize(mesh)
    d = 0.2 * h**(3.0 / 2.0)

    # Time parameters
    time_step = 0.1
    t_start, t_end = 0.0, 10.0

    # Penalty parameter
    gamma = 10 / h

    # Time stepping
    t = t_start
    step = 0
    while t < t_end:
        # Time discretization (Crank–Nicolson method)
        um = 0.5 * u + 0.5 * u0

        # Navier-Stokes equations in weak residual form (stabilized FEM)
        # Basic residual
        r = (inner((u - u0) / time_step + grad(p) + grad(um) * um, v) +
             nu * inner(grad(um), grad(v)) + div(um) * q) * dx
        # Weak boundary conditions
        r += gamma * (om * p * q + im * inner(u - uin, v) +
                      nm * inner(u, v)) * ds
        # Stabilization
        r += d * (inner(grad(p) + grad(um) * um,
                        grad(q) + grad(um) * v) + inner(div(um), div(v))) * dx

        # Solve the Navier-Stokes equation (one time step)
        solve(r == 0, w)

        if step % 5 == 0:
            # Plot norm of velocity at current time step
            nov = project(sqrt(inner(u, u)), Q)
            fig = plt.figure()
            plot(nov, fig=fig)
            plt.show()

            # Compute drag force on circle
            n = FacetNormal(mesh)
            drag_force_measure = p * n[0] * dsi(1)  # Drag (only pressure)
            drag_force = assemble(drag_force_measure)
            print("Drag force = " + str(drag_force))

        # Shift to next time step
        t += time_step
        step += 1
        u0 = project(u, V)
Esempio n. 35
0
def norm(v, norm_type="L2", mesh=None):
    """
    Return the norm of a given vector or function.

    *Arguments*
        v
            a :py:class:`Vector <dolfin.cpp.Vector>` or
            a :py:class:`Function <dolfin.functions.function.Function>`.
        norm_type
            see below for alternatives.
        mesh
            optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the norm.

    If the norm type is not specified, the standard :math:`L^2` -norm
    is computed. Possible norm types include:

    *Vectors*

    ================   =================  ================
    Norm               Usage
    ================   =================  ================
    :math:`l^2`        norm(x, 'l2')      Default
    :math:`l^1`        norm(x, 'l1')
    :math:`l^\infty`   norm(x, 'linf')
    ================   =================  ================

    *Functions*

    ================  =================  =================================
    Norm              Usage              Includes the :math:`L^2` -term
    ================  =================  =================================
    :math:`L^2`       norm(v, 'L2')      Yes
    :math:`H^1`       norm(v, 'H1')      Yes
    :math:`H^1_0`     norm(v, 'H10')     No
    :math:`H` (div)   norm(v, 'Hdiv')    Yes
    :math:`H` (div)   norm(v, 'Hdiv0')   No
    :math:`H` (curl)  norm(v, 'Hcurl')   Yes
    :math:`H` (curl)  norm(v, 'Hcurl0')  No
    ================  =================  =================================

    *Examples of usage*

    .. code-block:: python

        v = Function(V)
        x = v.vector()

        print norm(x, 'linf')   # print the infinity norm of vector x

        n = norm(v)             # compute L^2 norm of v
        print norm(v, 'Hdiv')   # print H(div) norm of v
        n = norm(v, 'H1', mesh) # compute H^1 norm of v on given mesh

    """

    # if not isinstance(v, (GenericVector, GenericFunction)):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "expected a GenericVector or GenericFunction")

    # Check arguments
    # if not isinstance(norm_type, string_types):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Norm type must be a string, not " +
    #                      str(type(norm_type)))
    # if mesh is not None and not isinstance(mesh, cpp.Mesh):
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Expecting a Mesh, not " + str(type(mesh)))

    # Get mesh from function
    if isinstance(v, cpp.function.Function) and mesh is None:
        mesh = v.function_space().mesh()

    # Define integration measure and domain
    dx = ufl.dx(mesh)

    # Select norm type
    if isinstance(v, cpp.la.GenericVector):
        return v.norm(norm_type.lower())

    elif isinstance(v, ufl.Coefficient):
        if norm_type.lower() == "l2":
            M = v**2*dx
        elif norm_type.lower() == "h1":
            M = (v**2 + grad(v)**2)*dx
        elif norm_type.lower() == "h10":
            M = grad(v)**2*dx
        elif norm_type.lower() == "hdiv":
            M = (v**2 + div(v)**2)*dx
        elif norm_type.lower() == "hdiv0":
            M = div(v)**2*dx
        elif norm_type.lower() == "hcurl":
            M = (v**2 + curl(v)**2)*dx
        elif norm_type.lower() == "hcurl0":
            M = curl(v)**2*dx
        # else:
        #     cpp.dolfin_error("norms.py",
        #                      "compute norm",
        #                      "Unknown norm type (\"%s\") for functions"
        #                      % str(norm_type))
    # else:
    #     cpp.dolfin_error("norms.py",
    #                      "compute norm",
    #                      "Unknown object type. Must be a vector or a function")

    # Assemble value
    r = assemble(M)

    # Check value
    if r < 0.0:
        pass
        # cpp.dolfin_error("norms.py",
        #                  "compute norm",
        #                  "Square of norm is negative, might be a round-off error")
    elif r == 0.0:
        return 0.0
    else:
        return sqrt(r)
Esempio n. 36
0
 def pressure_rhs():
     if self.args.bc == 'outflow':
         return inner(p0, div(v1)) * dx
     else:
         return inner(p0, div(v1)) * dx - inner(p0 * n, v1) * problem.get_outflow_measure_form()
def test_assembly_solve_taylor_hood(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    P2 = dolfin.VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = dolfin.FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x, only_boundary):
        """Define boundary x = 0"""
        return x[:, 0] < 10 * numpy.finfo(float).eps

    def boundary1(x, only_boundary):
        """Define boundary x = 1"""
        return x[:, 0] > (1.0 - 10 * numpy.finfo(float).eps)

    u0 = dolfin.Function(P2)
    u0.vector().set(1.0)
    u0.vector().ghostUpdate(addv=PETSc.InsertMode.INSERT,
                            mode=PETSc.ScatterMode.FORWARD)
    bc0 = dolfin.DirichletBC(P2, u0, boundary0)
    bc1 = dolfin.DirichletBC(P2, u0, boundary1)

    u, p = dolfin.TrialFunction(P2), dolfin.TrialFunction(P1)
    v, q = dolfin.TestFunction(P2), dolfin.TestFunction(P1)

    a00 = inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a11 = None

    p00 = a00
    p01, p10 = None, None
    p11 = inner(p, q) * dx

    # FIXME
    # We need zero function for the 'zero' part of L
    p_zero = dolfin.Function(P1)
    f = dolfin.Function(P2)
    L0 = ufl.inner(f, v) * dx
    L1 = ufl.inner(p_zero, q) * dx

    # -- Blocked and nested

    A0 = dolfin.fem.assemble_matrix_nest([[a00, a01], [a10, a11]], [bc0, bc1])
    A0norm = nest_matrix_norm(A0)
    P0 = dolfin.fem.assemble_matrix_nest([[p00, p01], [p10, p11]], [bc0, bc1])
    P0norm = nest_matrix_norm(P0)
    b0 = dolfin.fem.assemble_vector_nest([L0, L1], [[a00, a01], [a10, a11]],
                                         [bc0, bc1])
    b0norm = b0.norm()

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A0, P0)
    nested_IS = P0.getNestISs()
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType("fieldsplit")
    pc.setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]])
    ksp_u, ksp_p = pc.getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_u.getPC().setFactorSolverType('mumps')
    ksp_p.setType("preonly")

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x0 = b0.copy()
    ksp.solve(b0, x0)
    assert ksp.getConvergedReason() > 0

    # -- Blocked and monolithic

    A1 = dolfin.fem.assemble_matrix_block([[a00, a01], [a10, a11]], [bc0, bc1])
    assert A1.norm() == pytest.approx(A0norm, 1.0e-12)
    P1 = dolfin.fem.assemble_matrix_block([[p00, p01], [p10, p11]], [bc0, bc1])
    assert P1.norm() == pytest.approx(P0norm, 1.0e-12)
    b1 = dolfin.fem.assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]],
                                          [bc0, bc1])
    assert b1.norm() == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A1, P1)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')
    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setFromOptions()
    x1 = A1.createVecRight()
    ksp.solve(b1, x1)
    assert ksp.getConvergedReason() > 0
    assert x1.norm() == pytest.approx(x0.norm(), 1e-8)

    # -- Monolithic

    P2 = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2 * P1
    W = dolfin.FunctionSpace(mesh, TH)
    (u, p) = dolfin.TrialFunctions(W)
    (v, q) = dolfin.TestFunctions(W)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a = a00 + a01 + a10

    p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    p11 = ufl.inner(p, q) * dx
    p_form = p00 + p11

    f = dolfin.Function(W.sub(0).collapse())
    p_zero = dolfin.Function(W.sub(1).collapse())
    L0 = inner(f, v) * dx
    L1 = inner(p_zero, q) * dx
    L = L0 + L1

    bc0 = dolfin.DirichletBC(W.sub(0), u0, boundary0)
    bc1 = dolfin.DirichletBC(W.sub(0), u0, boundary1)

    A2 = dolfin.fem.assemble_matrix(a, [bc0, bc1])
    A2.assemble()
    assert A2.norm() == pytest.approx(A0norm, 1.0e-12)
    P2 = dolfin.fem.assemble_matrix(p_form, [bc0, bc1])
    P2.assemble()
    assert P2.norm() == pytest.approx(P0norm, 1.0e-12)

    b2 = dolfin.fem.assemble_vector(L)
    dolfin.fem.apply_lifting(b2, [a], [[bc0, bc1]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfin.fem.set_bc(b2, [bc0, bc1])
    b2norm = b2.norm()
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A2, P2)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x2 = A2.createVecRight()
    ksp.solve(b2, x2)
    assert ksp.getConvergedReason() > 0
    assert x0.norm() == pytest.approx(x2.norm(), 1e-8)
Esempio n. 38
0
def test_manufactured_poisson_dg(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.

    """
    with XDMFFile(MPI.COMM_WORLD,
                  os.path.join(datadir, filename),
                  "r",
                  encoding=XDMFFile.Encoding.ASCII) as xdmf:
        mesh = xdmf.read_mesh(name="Grid")

    V = FunctionSpace(mesh, ("DG", degree))
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    error = mesh.mpi_comm().allreduce(assemble_scalar((u_exact - uh)**2 * dx),
                                      op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Esempio n. 39
0
# <dolfin.cpp.function.FunctionSpace>`. Since we have a
# mixed function space, we write
# ``W.sub(0)`` for the velocity component of the space, and
# ``W.sub(1)`` for the pressure component of the space.
# The second argument specifies the value on the Dirichlet
# boundary. The last two arguments specify the marking of the subdomains:
# ``sub_domains`` contains the subdomain markers, and the final argument is the subdomain index.
#
# The bilinear and linear forms corresponding to the weak mixed
# formulation of the Stokes equations are defined as follows::

# Define variational problem
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
f = Function(W.sub(0).collapse())
a = (inner(grad(u), grad(v)) - inner(p, div(v)) + inner(div(u), q)) * dx
L = inner(f, v) * dx

# We also need to create a :py:class:`Function
# <dolfin.cpp.function.Function>` to store the solution(s). The (full)
# solution will be stored in ``w``, which we initialize using the mixed
# function space ``W``. The actual
# computation is performed by calling solve with the arguments ``a``,
# ``L``, ``w`` and ``bcs``. The separate components ``u`` and ``p`` of
# the solution can be extracted by calling the :py:meth:`split
# <dolfin.functions.function.Function.split>` function. Here we use an
# optional argument True in the split function to specify that we want a
# deep copy. If no argument is given we will get a shallow copy. We want
# a deep copy for further computations on the coefficient vectors::

# Compute solution
Esempio n. 40
0
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Martin Sandve Alnes, 2009
#
# Last changed: 2009-01-12
#
# The bilinear form a(v, u) and linear form L(v) for
# a mixed formulation of Poisson's equation with BDM
# (Brezzi-Douglas-Marini) elements.
#
from ufl import (Coefficient, FiniteElement, TestFunctions, TrialFunctions,
                 div, dot, dx, triangle)

cell = triangle
BDM1 = FiniteElement("Brezzi-Douglas-Marini", cell, 1)
DG0 = FiniteElement("Discontinuous Lagrange", cell, 0)

element = BDM1 * DG0

(tau, w) = TestFunctions(element)
(sigma, u) = TrialFunctions(element)

f = Coefficient(DG0)

a = (dot(tau, sigma) - div(tau) * u + w * div(sigma)) * dx
L = w * f * dx
Esempio n. 41
0
def test_assembly_solve_taylor_hood(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    P2 = fem.VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = fem.FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return x[0] < 10 * numpy.finfo(float).eps

    def boundary1(x):
        """Define boundary x = 1"""
        return x[0] > (1.0 - 10 * numpy.finfo(float).eps)

    # Locate facets on boundaries
    facetdim = mesh.topology.dim - 1
    bndry_facets0 = dolfinx.mesh.locate_entities_boundary(
        mesh, facetdim, boundary0)
    bndry_facets1 = dolfinx.mesh.locate_entities_boundary(
        mesh, facetdim, boundary1)

    bdofs0 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets1)

    u0 = dolfinx.Function(P2)
    u0.vector.set(1.0)
    u0.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    bc0 = dolfinx.DirichletBC(u0, bdofs0)
    bc1 = dolfinx.DirichletBC(u0, bdofs1)

    u, p = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    a00 = inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a11 = None

    p00 = a00
    p01, p10 = None, None
    p11 = inner(p, q) * dx

    # FIXME
    # We need zero function for the 'zero' part of L
    p_zero = dolfinx.Function(P1)
    f = dolfinx.Function(P2)
    L0 = ufl.inner(f, v) * dx
    L1 = ufl.inner(p_zero, q) * dx

    def nested_solve():
        """Nested solver"""
        A = dolfinx.fem.assemble_matrix_nest([[a00, a01], [a10, a11]],
                                             [bc0, bc1],
                                             [["baij", "aij"], ["aij", ""]])
        A.assemble()
        P = dolfinx.fem.assemble_matrix_nest([[p00, p01], [p10, p11]],
                                             [bc0, bc1],
                                             [["aij", "aij"], ["aij", ""]])
        P.assemble()
        b = dolfinx.fem.assemble_vector_nest([L0, L1])
        dolfinx.fem.apply_lifting_nest(b, [[a00, a01], [a10, a11]], [bc0, bc1])
        for b_sub in b.getNestSubVecs():
            b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                              mode=PETSc.ScatterMode.REVERSE)
        bcs = dolfinx.cpp.fem.bcs_rows(
            dolfinx.fem.assemble._create_cpp_form([L0, L1]), [bc0, bc1])
        dolfinx.fem.set_bc_nest(b, bcs)
        b.assemble()

        ksp = PETSc.KSP()
        ksp.create(mesh.mpi_comm())
        ksp.setOperators(A, P)
        nested_IS = P.getNestISs()
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType("fieldsplit")
        pc.setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]])
        ksp_u, ksp_p = pc.getFieldSplitSubKSP()
        ksp_u.setType("preonly")
        ksp_u.getPC().setType('lu')
        ksp_p.setType("preonly")

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = b.copy()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), nest_matrix_norm(A), nest_matrix_norm(P)

    def blocked_solve():
        """Blocked (monolithic) solver"""
        A = dolfinx.fem.assemble_matrix_block([[a00, a01], [a10, a11]],
                                              [bc0, bc1])
        A.assemble()
        P = dolfinx.fem.assemble_matrix_block([[p00, p01], [p10, p11]],
                                              [bc0, bc1])
        P.assemble()
        b = dolfinx.fem.assemble_vector_block([L0, L1],
                                              [[a00, a01], [a10, a11]],
                                              [bc0, bc1])

        ksp = PETSc.KSP()
        ksp.create(mesh.mpi_comm())
        ksp.setOperators(A, P)
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType('lu')
        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setFromOptions()
        x = A.createVecRight()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), A.norm(), P.norm()

    def monolithic_solve():
        """Monolithic (interleaved) solver"""
        P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
        P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
        TH = P2_el * P1_el
        W = dolfinx.FunctionSpace(mesh, TH)
        (u, p) = ufl.TrialFunctions(W)
        (v, q) = ufl.TestFunctions(W)
        a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        a01 = ufl.inner(p, ufl.div(v)) * dx
        a10 = ufl.inner(ufl.div(u), q) * dx
        a = a00 + a01 + a10

        p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        p11 = ufl.inner(p, q) * dx
        p_form = p00 + p11

        f = dolfinx.Function(W.sub(0).collapse())
        p_zero = dolfinx.Function(W.sub(1).collapse())
        L0 = inner(f, v) * dx
        L1 = inner(p_zero, q) * dx
        L = L0 + L1

        bdofsW0_P2_0 = dolfinx.fem.locate_dofs_topological(
            (W.sub(0), P2), facetdim, bndry_facets0)
        bdofsW0_P2_1 = dolfinx.fem.locate_dofs_topological(
            (W.sub(0), P2), facetdim, bndry_facets1)

        bc0 = dolfinx.DirichletBC(u0, bdofsW0_P2_0, W.sub(0))
        bc1 = dolfinx.DirichletBC(u0, bdofsW0_P2_1, W.sub(0))

        A = dolfinx.fem.assemble_matrix(a, [bc0, bc1])
        A.assemble()
        P = dolfinx.fem.assemble_matrix(p_form, [bc0, bc1])
        P.assemble()

        b = dolfinx.fem.assemble_vector(L)
        dolfinx.fem.apply_lifting(b, [a], [[bc0, bc1]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        dolfinx.fem.set_bc(b, [bc0, bc1])

        ksp = PETSc.KSP()
        ksp.create(mesh.mpi_comm())
        ksp.setOperators(A, P)
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType('lu')

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = A.createVecRight()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), A.norm(), P.norm()

    bnorm0, xnorm0, Anorm0, Pnorm0 = nested_solve()
    bnorm1, xnorm1, Anorm1, Pnorm1 = blocked_solve()
    bnorm2, xnorm2, Anorm2, Pnorm2 = monolithic_solve()

    assert bnorm1 == pytest.approx(bnorm0, 1.0e-12)
    assert xnorm1 == pytest.approx(xnorm0, 1.0e-8)
    assert Anorm1 == pytest.approx(Anorm0, 1.0e-12)
    assert Pnorm1 == pytest.approx(Pnorm0, 1.0e-12)

    assert bnorm2 == pytest.approx(bnorm0, 1.0e-12)
    assert xnorm2 == pytest.approx(xnorm0, 1.0e-8)
    assert Anorm2 == pytest.approx(Anorm0, 1.0e-12)
    assert Pnorm2 == pytest.approx(Pnorm0, 1.0e-12)
Esempio n. 42
0
def test_assembly_solve_taylor_hood(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    P2 = function.VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = function.FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return x[0] < 10 * numpy.finfo(float).eps

    def boundary1(x):
        """Define boundary x = 1"""
        return x[0] > (1.0 - 10 * numpy.finfo(float).eps)

    facetdim = mesh.topology.dim - 1
    mf = dolfinx.MeshFunction("size_t", mesh, facetdim, 0)
    mf.mark(boundary0, 1)
    mf.mark(boundary1, 2)
    bndry_facets0 = numpy.where(mf.values == 1)[0]
    bndry_facets1 = numpy.where(mf.values == 2)[0]

    bdofs0 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = dolfinx.fem.locate_dofs_topological(P2, facetdim, bndry_facets1)

    u0 = dolfinx.Function(P2)
    u0.vector.set(1.0)
    u0.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    bc0 = dolfinx.DirichletBC(u0, bdofs0)
    bc1 = dolfinx.DirichletBC(u0, bdofs1)

    u, p = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    a00 = inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a11 = None

    p00 = a00
    p01, p10 = None, None
    p11 = inner(p, q) * dx

    # FIXME
    # We need zero function for the 'zero' part of L
    p_zero = dolfinx.Function(P1)
    f = dolfinx.Function(P2)
    L0 = ufl.inner(f, v) * dx
    L1 = ufl.inner(p_zero, q) * dx

    # -- Blocked (nested)

    A0 = dolfinx.fem.assemble_matrix_nest([[a00, a01], [a10, a11]], [bc0, bc1])
    A0.assemble()
    A0norm = nest_matrix_norm(A0)
    P0 = dolfinx.fem.assemble_matrix_nest([[p00, p01], [p10, p11]], [bc0, bc1])
    P0.assemble()
    P0norm = nest_matrix_norm(P0)
    b0 = dolfinx.fem.assemble_vector_nest([L0, L1])
    dolfinx.fem.apply_lifting_nest(b0, [[a00, a01], [a10, a11]], [bc0, bc1])
    for b_sub in b0.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = dolfinx.cpp.fem.bcs_rows(
        dolfinx.fem.assemble._create_cpp_form([L0, L1]), [bc0, bc1])
    dolfinx.fem.set_bc_nest(b0, bcs0)
    b0.assemble()
    b0norm = b0.norm()

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A0, P0)
    nested_IS = P0.getNestISs()
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType("fieldsplit")
    pc.setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]])
    ksp_u, ksp_p = pc.getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_u.getPC().setFactorSolverType('mumps')
    ksp_p.setType("preonly")

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x0 = b0.copy()
    ksp.solve(b0, x0)
    assert ksp.getConvergedReason() > 0

    # -- Blocked (monolithic)

    A1 = dolfinx.fem.assemble_matrix_block([[a00, a01], [a10, a11]],
                                           [bc0, bc1])
    A1.assemble()
    assert A1.norm() == pytest.approx(A0norm, 1.0e-12)
    P1 = dolfinx.fem.assemble_matrix_block([[p00, p01], [p10, p11]],
                                           [bc0, bc1])
    P1.assemble()
    assert P1.norm() == pytest.approx(P0norm, 1.0e-12)

    b1 = dolfinx.fem.assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]],
                                           [bc0, bc1])

    assert b1.norm() == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A1, P1)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')
    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setFromOptions()
    x1 = A1.createVecRight()
    ksp.solve(b1, x1)
    assert ksp.getConvergedReason() > 0
    assert x1.norm() == pytest.approx(x0.norm(), 1e-8)

    # -- Monolithic

    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = dolfinx.FunctionSpace(mesh, TH)
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    a01 = ufl.inner(p, ufl.div(v)) * dx
    a10 = ufl.inner(ufl.div(u), q) * dx
    a = a00 + a01 + a10

    p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
    p11 = ufl.inner(p, q) * dx
    p_form = p00 + p11

    f = dolfinx.Function(W.sub(0).collapse())
    p_zero = dolfinx.Function(W.sub(1).collapse())
    L0 = inner(f, v) * dx
    L1 = inner(p_zero, q) * dx
    L = L0 + L1

    bdofsW0_P2_0 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets0)
    bdofsW0_P2_1 = dolfinx.fem.locate_dofs_topological((W.sub(0), P2),
                                                       facetdim, bndry_facets1)

    bc0 = dolfinx.DirichletBC(u0, bdofsW0_P2_0, W.sub(0))
    bc1 = dolfinx.DirichletBC(u0, bdofsW0_P2_1, W.sub(0))

    A2 = dolfinx.fem.assemble_matrix(a, [bc0, bc1])
    A2.assemble()
    assert A2.norm() == pytest.approx(A0norm, 1.0e-12)
    P2 = dolfinx.fem.assemble_matrix(p_form, [bc0, bc1])
    P2.assemble()
    assert P2.norm() == pytest.approx(P0norm, 1.0e-12)

    b2 = dolfinx.fem.assemble_vector(L)
    dolfinx.fem.apply_lifting(b2, [a], [[bc0, bc1]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.set_bc(b2, [bc0, bc1])
    b2norm = b2.norm()
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    ksp = PETSc.KSP()
    ksp.create(mesh.mpi_comm())
    ksp.setOperators(A2, P2)
    ksp.setType("minres")
    pc = ksp.getPC()
    pc.setType('lu')
    pc.setFactorSolverType('mumps')

    def monitor(ksp, its, rnorm):
        # print("Num it, rnorm:", its, rnorm)
        pass

    ksp.setTolerances(rtol=1.0e-8, max_it=50)
    ksp.setMonitor(monitor)
    ksp.setFromOptions()
    x2 = A2.createVecRight()
    ksp.solve(b2, x2)
    assert ksp.getConvergedReason() > 0
    assert x0.norm() == pytest.approx(x2.norm(), 1e-8)
Esempio n. 43
0
 def save_div(self, is_tent, field):
     self.tc.start('div')
     self.divFunction.assign(project(div(field), self.divSpace))
     self.fileDict['d2' if is_tent else 'd']['file'].write(self.divFunction, self.actual_time)
     self.tc.end('div')
Esempio n. 44
0
 def F(u, v, q):
     return (inner(T(u), grad(v)) - q * div(u)) * dx + inner(grad(u) * u, v) * dx