Esempio n. 1
0
def test_comparison_checker(self):
    cell = triangle
    element = FiniteElement("Lagrange", cell, 1)

    u = TrialFunction(element)
    v = TestFunction(element)

    a = conditional(ge(abs(u), imag(v)), u, v)
    b = conditional(le(sqrt(abs(u)), imag(v)), as_ufl(1), as_ufl(1j))
    c = conditional(gt(abs(u), pow(imag(v), 0.5)), sin(u), cos(v))
    d = conditional(lt(as_ufl(-1), as_ufl(1)), u, v)
    e = max_value(as_ufl(0), real(u))
    f = min_value(sin(u), cos(v))
    g = min_value(sin(pow(u, 3)), cos(abs(v)))

    assert do_comparison_check(a) == conditional(ge(real(abs(u)), real(imag(v))), u, v)
    with pytest.raises(ComplexComparisonError):
        b = do_comparison_check(b)
    with pytest.raises(ComplexComparisonError):
        c = do_comparison_check(c)
    assert do_comparison_check(d) == conditional(lt(real(as_ufl(-1)), real(as_ufl(1))), u, v)
    assert do_comparison_check(e) == max_value(real(as_ufl(0)), real(real(u)))
    assert do_comparison_check(f) == min_value(real(sin(u)), real(cos(v)))
    assert do_comparison_check(g) == min_value(real(sin(pow(u, 3))), real(cos(abs(v))))
Esempio n. 2
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = vectotal([
             tdrho * wrho * self.dx
             for tdrho, wrho in zip(self.tdrhos, self.wrhos)
         ])
         dU_integral = vectotal(
             [tdU * wU * self.dx for tdU, wU in zip(self.tdUs, self.wUs)])
         self.A = fe.assemble(drho_integral + dU_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         self.dsol = Function(self.VS)
         self.drhos = self.dsol.split()[:2**self.dim]
         self.dUs = self.dsol.split()[2**self.dim:]
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     # self.Usds is a list of nligands lists. Sublist i is of
     # length 2**dim and lists the value of ligand i on each of the
     # 2**dim subdomains.
     #
     if not hasattr(self, 'Usds'):
         self.Usds = [
             matmul(self.eomat,
                    self.iUs[i * 2**self.dim:(i + 1) * 2**self.dim])
             for i in range(self.nligands)
         ]
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         #
         # Compute fluxes on subdomains.
         # Vsds is a list of length 2**dim, the value of V on each
         # subdomain.
         #
         self.Vsds = []
         for Usd, rhosd in zip(zip(*self.Usds), self.rhosds):
             self.Vsds.append(self.V(Usd, rhosd))
         #
         # I may need to adjust the signs of the subdomain vs by
         # the symmetries of the combinations
         #
         self.vsds = [
             -ufl.grad(Vsd) - (self.s2 * ufl.grad(rhosd) /
                               ufl.max_value(rhosd, self.rho_min))
             for Vsd, rhosd in zip(self.Vsds, self.rhosds)
         ]
         self.fluxsds = [
             vsd * rhosd for vsd, rhosd in zip(self.vsds, self.rhosds)
         ]
         self.vnsds = [
             ufl.max_value(ufl.dot(vsd, self.n), 0) for vsd in self.vsds
         ]
         self.facet_fluxsds = [
             (vnsd('+') * ufl.max_value(rhosd('+'), 0.0) -
              vnsd('-') * ufl.max_value(rhosd('-'), 0.0))
             for vnsd, rhosd in zip(self.vnsds, self.rhosds)
         ]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim) * self.eomat, self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim) * self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = vectotal([
             -facet_flux * ufl.jump(wrho) * self.dS
             for facet_flux, wrho in zip(self.facet_fluxs, self.wrhos)
         ])
         self.rho_grad_move = vectotal([
             ufl.dot(flux, ufl.grad(wrho)) * self.dx
             for flux, wrho in zip(self.fluxs, self.wrhos)
         ])
         self.rho_penalty = vectotal([
             -(self.rhopen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(rho, self.n), ufl.jump(wrho, self.n)) *
             self.dS for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.grho_penalty = vectotal([
             -self.grhopen * self.degree**2 *
             (ufl.jump(ufl.grad(rho), self.n) *
              ufl.jump(ufl.grad(wrho), self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = 0.0
         self.U_secretion = 0.0
         self.jump_gUw = 0.0
         self.U_diffusion = 0.0
         self.U_penalty = 0.0
         self.gU_penalty = 0.0
         for j, lig in enumerate(self.ligands.ligands()):
             sl = slice(j * 2**self.dim, (j + 1) * 2**self.dim)
             self.U_decay += -lig.gamma * sum([
                 iUi * wUi * self.dx
                 for iUi, wUi in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_secretion += lig.s * sum([
                 rho * wU * self.dx
                 for rho, wU in zip(self.irhos, self.wUs[sl])
             ])
             self.jump_gUw += lig.D * sum([
                 ufl.jump(wU * ufl.grad(U), self.n) * self.dS
                 for wU, U in zip(self.wUs[sl], self.iUs[sl])
             ])
             self.U_diffusion += -lig.D * sum([
                 ufl.dot(ufl.grad(U), ufl.grad(wU)) * self.dx
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_penalty += -self.Upen * self.degree**2 * sum([
                 (1.0 / self.havg) * ufl.dot(ufl.jump(U, self.n),
                                             ufl.jump(wU, self.n)) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.gU_penalty += -self.gUpen * self.degree**2 * sum([
                 ufl.jump(ufl.grad(U), self.n) *
                 ufl.jump(ufl.grad(wU), self.n) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 3
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = vectotal(
             [tdrho*wrho*self.dx for tdrho,wrho in
              zip(self.tdrhos, self.wrhos)]
         )
         dU_integral = vectotal(
             [tdU*wU*self.dx
              for tdU,wU in zip(self.tdUs, self.wUs)
             ]
         )
         self.A = fe.assemble(drho_integral + dU_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         self.dsol = Function(self.VS)
         self.drhos = self.dsol.split()[: 2**self.dim]
         self.dUs = self.dsol.split()[2**self.dim :]
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     if not hasattr(self, 'Usds'):
         self.Usds = matmul(self.eomat, self.iUs)
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         #
         # Compute fluxes on subdomains.
         #
         self.Vsds = [self.V(Usd, rhosd) for Usd,rhosd in
                      zip(self.Usds, self.rhosds)]
         #
         # I may need to adjust the signs of the subdomain vs by
         # the symmetries of the combinations
         #
         self.vsds = [-ufl.grad(Vsd) - (
             self.s2*ufl.grad(rhosd)/ufl.max_value(rhosd, self.rho_min)
         ) for Vsd,rhosd in zip(self.Vsds, self.rhosds)]
         self.fluxsds = [vsd * rhosd for vsd,rhosd in
                         zip(self.vsds, self.rhosds)]
         self.vnsds = [ufl.max_value(ufl.dot(vsd, self.n), 0)
                       for vsd in self.vsds]
         self.facet_fluxsds = [(
             vnsd('+')*ufl.max_value(rhosd('+'), 0.0) -
             vnsd('-')*ufl.max_value(rhosd('-'), 0.0)
         ) for vnsd,rhosd in zip(self.vnsds, self.rhosds)]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim)*self.eomat,
                             self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim)*self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = vectotal(
             [-facet_flux*ufl.jump(wrho)*self.dS
              for facet_flux,wrho in
              zip(self.facet_fluxs, self.wrhos)]
         )
         self.rho_grad_move = vectotal(
             [ufl.dot(flux, ufl.grad(wrho))*self.dx
              for flux,wrho in
              zip(self.fluxs, self.wrhos)]
         )
         self.rho_penalty = vectotal(
             [-(self.rhopen * self.degree**2 / self.havg) *
              ufl.dot(ufl.jump(rho, self.n),
                     ufl.jump(wrho, self.n)) * self.dS
              for rho,wrho in zip(self.irhos, self.wrhos)]
         )
         self.grho_penalty = vectotal(
             [-self.grhopen * self.degree**2 *
              (ufl.jump(ufl.grad(rho), self.n) *
               ufl.jump(ufl.grad(wrho), self.n)) * self.dS
              for rho,wrho in zip(self.irhos, self.wrhos)]
         )
         self.rho_terms = (
             self.rho_flux_jump + self.rho_grad_move +
             self.rho_penalty + self.grho_penalty
         )
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = vectotal(
             [-self.gamma * U * wU * self.dx
              for U,wU in zip(self.iUs, self.wUs)]
         )
         self.U_secretion = vectotal(
             [self.s * rho * wU * self.dx
              for rho, wU in zip(self.irhos, self.wUs)]
         )
         self.jump_gUw = vectotal(
             [self.D * ufl.jump(wU * ufl.grad(U), self.n) * self.dS
              for wU, U in zip(self.wUs, self.iUs)
             ]
         )
         self.U_diffusion = vectotal(
             [-self.D
              * ufl.dot(ufl.grad(U), ufl.grad(wU))*self.dx
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.U_penalty = vectotal(
             [-(self.Upen * self.degree**2 / self.havg)
              * ufl.dot(ufl.jump(U, self.n), ufl.jump(wU, self.n))*self.dS
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.gU_penalty = vectotal(
             [-self.gUpen * self.degree**2 *
              ufl.jump(ufl.grad(U), self.n) *
              ufl.jump(ufl.grad(wU), self.n) * self.dS
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty
         )
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 4
0
 def setup_problem(self, t, debug=False):
     self.set_time(t)
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         logVARIABLE('making matrix A')
         self.drho_integral = sum([
             tdrho * wrho * self.dx
             for tdrho, wrho in zip(self.tdrhos, self.wrhos)
         ])
         self.dU_integral = sum(
             [tdU * wU * self.dx for tdU, wU in zip(self.tdUs, self.wUs)])
         logVARIABLE('assembling A')
         self.A = fe.PETScMatrix()
         logVARIABLE('self.A', self.A)
         fe.assemble(self.drho_integral + self.dU_integral, tensor=self.A)
         logVARIABLE('A assembled. Applying BCs')
         pA = fe.as_backend_type(self.A).mat()
         Adiag = pA.getDiagonal()
         logVARIABLE('Adiag.array', Adiag.array)
         # self.A = fe.assemble(self.drho_integral + self.dU_integral +
         #                      self.dP_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         Adiag = pA.getDiagonal()
         logVARIABLE('Adiag.array', Adiag.array)
         self.dsol = Function(self.VS)
         dsolsplit = self.dsol.split()
         self.drhos, self.dUs = (dsolsplit[:2**self.dim],
                                 dsolsplit[2**self.dim:])
     #
     # assemble RHS (for each time point, but compile only once)
     #
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     # self.Usds is a list of nligands lists. Sublist i is of
     # length 2**dim and lists the value of ligand i on each of the
     # 2**dim subdomains.
     #
     if not hasattr(self, 'Usds'):
         self.Usds = [
             matmul(self.eomat,
                    self.iUs[i * 2**self.dim:(i + 1) * 2**self.dim])
             for i in range(self.nligands)
         ]
     if not hasattr(self, 'rho_terms'):
         logVARIABLE('making rho_terms')
         self.sigma = self.iparams['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rhomin = self.iparams['rhomin']
         self.rhopen = self.iparams['rhopen']
         self.grhopen = self.iparams['grhopen']
         #
         # Compute fluxes on subdomains.
         # Vsds is a list of length 2**dim, the value of V on each
         # subdomain.
         #
         self.Vsds = []
         for Usd, rhosd in zip(zip(*self.Usds), self.rhosds):
             self.Vsds.append(self.V(Usd, ufl.max_value(rhosd,
                                                        self.rhomin)))
         self.vsds = [
             -ufl.grad(Vsd) -
             (self.s2 * ufl.grad(rhosd) / ufl.max_value(rhosd, self.rhomin))
             for Vsd, rhosd in zip(self.Vsds, self.rhosds)
         ]
         self.fluxsds = [
             vsd * rhosd for vsd, rhosd in zip(self.vsds, self.rhosds)
         ]
         self.vnsds = [
             ufl.max_value(ufl.dot(vsd, self.n), 0) for vsd in self.vsds
         ]
         self.facet_fluxsds = [
             (vnsd('+') * ufl.max_value(rhosd('+'), 0.0) -
              vnsd('-') * ufl.max_value(rhosd('-'), 0.0))
             for vnsd, rhosd in zip(self.vnsds, self.rhosds)
         ]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim) * self.eomat, self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim) * self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = sum([
             -facet_flux * ufl.jump(wrho) * self.dS
             for facet_flux, wrho in zip(self.facet_fluxs, self.wrhos)
         ])
         self.rho_grad_move = sum([
             ufl.dot(flux, ufl.grad(wrho)) * self.dx
             for flux, wrho in zip(self.fluxs, self.wrhos)
         ])
         self.rho_penalty = sum([
             -(self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(rho, self.n),
                     ufl.jump(self.rhopen * wrho, self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.grho_penalty = sum([
             self.degree**2 *
             (ufl.jump(ufl.grad(rho), self.n) *
              ufl.jump(ufl.grad(-self.grhopen * wrho), self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
         logVARIABLE('rho_terms made')
     if not hasattr(self, 'U_terms'):
         logVARIABLE('making U_terms')
         self.Umin = self.iparams['Umin']
         self.Upen = self.iparams['Upen']
         self.gUpen = self.iparams['gUpen']
         self.U_decay = 0.0
         self.U_secretion = 0.0
         self.jump_gUw = 0.0
         self.U_diffusion = 0.0
         self.U_penalty = 0.0
         self.gU_penalty = 0.0
         for j, lig in enumerate(self.iligands.ligands()):
             sl = slice(j * 2**self.dim, (j + 1) * 2**self.dim)
             self.U_decay += sum([
                 -lig.gamma * iUi * wUi * self.dx
                 for iUi, wUi in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_secretion += sum([
                 lig.s * rho * wU * self.dx
                 for rho, wU in zip(self.irhos, self.wUs[sl])
             ])
             self.jump_gUw += sum([
                 ufl.jump(lig.D * wU * ufl.grad(U), self.n) * self.dS
                 for wU, U in zip(self.wUs[sl], self.iUs[sl])
             ])
             self.U_diffusion += sum([
                 -lig.D * ufl.dot(ufl.grad(U), ufl.grad(wU)) * self.dx
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_penalty += sum([
                 (-self.degree**2 / self.havg) *
                 ufl.dot(ufl.jump(U, self.n),
                         ufl.jump(self.Upen * wU, self.n)) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.gU_penalty += sum([
                 -self.degree**2 * ufl.jump(ufl.grad(U), self.n) *
                 ufl.jump(ufl.grad(self.gUpen * wU), self.n) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
         logVARIABLE('U_terms made')
     if not hasattr(self, 'all_terms'):
         logVARIABLE('making all_terms')
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         logVARIABLE('making J_terms')
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 5
0
 def setup_problem(self, t, debug=False):
     self.set_time(t)
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         self.drho_integral = self.tdrho * self.wrho * self.dx
         self.dU_integral = sum([
             tdUi * wUi * self.dx for tdUi, wUi in zip(self.tdUs, self.wUs)
         ])
         logVARIABLE('assembling A')
         self.A = PETScMatrix()
         logVARIABLE('self.A', self.A)
         fe.assemble(self.drho_integral + self.dU_integral, tensor=self.A)
         logVARIABLE('A assembled. Applying BCs')
         self.dsol = Function(self.VS)
         dsolsplit = self.dsol.split()
         self.drho, self.dUs = dsolsplit[0], dsolsplit[1:]
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.iparams['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rhomin = self.iparams['rhomin']
         self.rhopen = self.iparams['rhopen']
         self.grhopen = self.iparams['grhopen']
         self.v = -ufl.grad(
             self.V(self.iUs, ufl.max_value(self.irho, self.rhomin)) -
             (self.s2 * ufl.grad(self.irho) /
              ufl.max_value(self.irho, self.rhomin)))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = ufl.jump(self.vn * ufl.max_value(self.irho, 0.0))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.irho, self.n),
                     ufl.jump(self.rhopen * self.wrho, self.n)) * self.dS)
         self.grho_penalty = -(
             self.degree**2 *
             (ufl.jump(ufl.grad(self.irho), self.n) * ufl.jump(
                 ufl.grad(self.grhopen * self.wrho), self.n)) * self.dS)
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.Umin = self.iparams['Umin']
         self.Upen = self.iparams['Upen']
         self.gUpen = self.iparams['gUpen']
         self.U_decay = sum([
             -lig.gamma * iUi * wUi * self.dx for lig, iUi, wUi in zip(
                 self.iligands.ligands(), self.iUs, self.wUs)
         ])
         self.U_secretion = sum([
             lig.s * self.irho * wUi * self.dx
             for lig, wUi in zip(self.iligands.ligands(), self.wUs)
         ])
         self.jump_gUw = sum([
             ufl.jump(lig.D * wUi * ufl.grad(iUi), self.n) * self.dS
             for lig, wUi, iUi in zip(self.iligands.ligands(), self.wUs,
                                      self.iUs)
         ])
         self.U_diffusion = sum([
             -lig.D * ufl.dot(ufl.grad(iUi), ufl.grad(wUi)) * self.dx
             for lig, iUi, wUi in zip(self.iligands.ligands(), self.iUs,
                                      self.wUs)
         ])
         self.U_penalty = sum([
             -(self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(iUi, self.n), ufl.jump(self.Upen * wUi, self.n)) *
             self.dS for iUi, wUi in zip(self.iUs, self.wUs)
         ])
         self.gU_penalty = sum([
             -self.degree**2 * ufl.jump(ufl.grad(iUi), self.n) *
             ufl.jump(ufl.grad(self.gUpen * wUi), self.n) * self.dS
             for iUi, wUi in zip(self.iUs, self.wUs)
         ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 6
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = self.tdrho * self.wrho * self.dx
         dU_integral = self.tdU * self.wU * self.dx
         self.A = fe.assemble(drho_integral + dU_integral)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #         method=self.solver_type
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         self.dsol = Function(self.VS)
         self.drho, self.dU = self.dsol.sub(0), self.dsol.sub(1)
     #
     # assemble RHS (has to be done for each time point)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         self.v = -ufl.grad(self.V(self.iU, self.irho))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = (self.vn('+') * self.irho('+') -
                            self.vn('-') * self.irho('-'))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.rhopen * self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(self.irho, self.n), ufl.jump(self.wrho, self.n)) *
             self.dS)
         # self.facet_flux = (
         #     self.vn('+')*self.rho('+') - self.vn('-')*self.rho('-')
         # )
         # self.rho_flux_jump = -self.facet_flux*ufl.jump(self.wrho)*self.dS
         # self.rho_grad_move = ufl.dot(self.flux, ufl.grad(self.wrho))*self.dx
         self.jump_grhow = (
             self.s2 * ufl.jump(self.wrho * ufl.grad(self.irho), self.n) *
             self.dS)
         self.rho_diffusion = -self.s2 * ufl.dot(ufl.grad(
             self.irho), ufl.grad(self.wrho)) * self.dx
         # self.rho_penalty = -(
         #     (self.rhopen * self.degree**2 / self.havg) *
         #     ufl.dot(ufl.jump(self.rho, self.n),
         #            ufl.jump(self.wrho, self.n)) * self.dS
         # )
         self.grho_penalty = -(self.grhopen * self.degree**2 *
                               (ufl.jump(ufl.grad(self.irho), self.n) *
                                ufl.jump(ufl.grad(self.wrho), self.n)) *
                               self.dS)
         self.rho_terms = (
             # advection terms
             self.rho_flux_jump + self.rho_grad_move +
             # diffusive terms
             self.rho_diffusion + self.jump_grhow +
             # penalty terms (to enforce continuity)
             self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = -self.gamma * self.iU * self.wU * self.dx
         self.U_secretion = self.s * self.irho * self.wU * self.dx
         self.jump_gUw = (self.D *
                          ufl.jump(self.wU * ufl.grad(self.iU), self.n) *
                          self.dS)
         self.U_diffusion = -self.D * ufl.dot(ufl.grad(self.iU),
                                              ufl.grad(self.wU)) * self.dx
         self.U_penalty = -(
             (self.Upen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.iU, self.n), ufl.jump(self.wU, self.n)) *
             self.dS)
         self.gU_penalty = -(self.gUpen * self.degree**2 *
                             (ufl.jump(ufl.grad(self.iU), self.n) *
                              ufl.jump(ufl.grad(self.wU), self.n)) *
                             self.dS)
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 7
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         self.drho_integral = self.tdrho * self.wrho * self.dx
         self.dU_integral = self.tdU * self.wU * self.dx
         self.A = fe.assemble(self.drho_integral + self.dU_integral)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         # self.solver.parameters.add('linear_solver', self.solver_type)
         # kparams = fe.Parameters('krylov_solver')
         # kparams.add('report', True)
         # kparams.add('nonzero_initial_guess', True)
         # self.solver.parameters.add(kparams)
         # lparams = fe.Parameters('lu_solver')
         # lparams.add('report', True)
         # lparams.add('reuse_factorization', True)
         # lparams.add('verbose', True)
         # self.solver.parameters.add(lparams)
         self.dsol = Function(self.VS)
         self.drho, self.dU = self.dsol.sub(0), self.dsol.sub(1)
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         self.v = -ufl.grad(self.V(self.iU, self.irho)) - (
             self.s2 * ufl.grad(self.irho) /
             ufl.max_value(self.irho, self.rho_min))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = (
             self.vn('+') * ufl.max_value(self.irho('+'), 0.0) -
             self.vn('-') * ufl.max_value(self.irho('-'), 0.0))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.rhopen * self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(self.irho, self.n), ufl.jump(self.wrho, self.n)) *
             self.dS)
         self.grho_penalty = -(self.grhopen * self.degree**2 *
                               (ufl.jump(ufl.grad(self.irho), self.n) *
                                ufl.jump(ufl.grad(self.wrho), self.n)) *
                               self.dS)
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = -self.gamma * self.iU * self.wU * self.dx
         self.U_secretion = self.s * self.irho * self.wU * self.dx
         self.jump_gUw = (self.D *
                          ufl.jump(self.wU * ufl.grad(self.iU), self.n) *
                          self.dS)
         self.U_diffusion = -self.D * ufl.dot(ufl.grad(self.iU),
                                              ufl.grad(self.wU)) * self.dx
         self.U_penalty = -(
             (self.Upen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.iU, self.n), ufl.jump(self.wU, self.n)) *
             self.dS)
         self.gU_penalty = -(self.gUpen * self.degree**2 *
                             (ufl.jump(ufl.grad(self.iU), self.n) *
                              ufl.jump(ufl.grad(self.wU), self.n)) *
                             self.dS)
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Esempio n. 8
0
def boundary_R(x, on_boundary):
    return on_boundary and near(x[0], 1)


bc_R = DirichletBC(V, p_R, boundary_R)

bcs = [bc_L, bc_R]

# Defining variational problem
p = TrialFunction(V)
v = TestFunction(V)
d = 2
I = Identity(d)
x, y = SpatialCoordinate(mesh)
M = max_value(Constant(0.10), exp(-(10 * y - 1.0 * sin(10 * x) - 5.0)**2))
K = M * I
a = dot(K * grad(p), grad(v)) * dx
f1 = as_vector((-2 * x, 0))
f = nabla_div(dot(-K, f1))
L = inner(f, v) * dx

# Computing solutions
p = Function(V)
solve(a == L, p, bcs)
u_bar = -K * grad(p)

# Projecting the Velocity profile
W = VectorFunctionSpace(mesh, 'P', 1)
u_bar1 = project(u_bar, W)