Esempio n. 1
0
def test_directjumper():
    Lmin = -1.0
    us = 0.5 + np.zeros((100, 2))
    #Ls = np.zeros(100)
    region = make_region(2)

    def transform(x):
        return x

    def loglike(x):
        return 0.0

    def gradient(x, plot=False):
        j = np.argmax(np.abs(x - 0.5))
        v = np.zeros(len(x))
        v[j] = -1 if x[j] > 0.5 else 1
        return v

    def nocall(x):
        assert False

    ui = us[np.random.randint(len(us)), :]
    v = np.array([0.01, 0.01])
    path = ContourSamplingPath(SamplingPath(ui, v, 0.0), region)
    path.gradient = nocall
    sampler = ClockedBisectSampler(path)
    stepper = DirectJumper(sampler, 4)

    assert (stepper.naccepts, stepper.nrejects) == (0, 0), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 0, stepper.isteps
    x, L = makejump(stepper, sampler, transform, loglike, Lmin)
    assert_allclose(x, [0.54, 0.54])
    assert (stepper.naccepts, stepper.nrejects) == (4, 0), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 4, stepper.isteps

    print()
    print("make reflect")
    print()

    def loglike(x):
        return 0.0 if x[0] < 0.505 else -100

    path = ContourSamplingPath(SamplingPath(ui, v, 0.0), region)
    path.gradient = gradient
    sampler = ClockedBisectSampler(path)
    stepper = DirectJumper(sampler, 4)
    assert (stepper.naccepts, stepper.nrejects) == (0, 0), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 0, stepper.isteps
    x, L = makejump(stepper, sampler, transform, loglike, Lmin)
    assert_allclose(x, [0.47, 0.55])
    assert (stepper.naccepts, stepper.nrejects) == (4, 0), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 4, stepper.isteps

    print()
    print("make stuck")
    print()

    # make stuck
    def loglike(x):
        return -100

    path = ContourSamplingPath(SamplingPath(ui, v, 0.0), region)
    path.gradient = gradient
    sampler = ClockedBisectSampler(path)
    stepper = DirectJumper(sampler, 4)
    assert (stepper.naccepts, stepper.nrejects) == (0, 0), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 0, stepper.isteps
    x, L = makejump(stepper, sampler, transform, loglike, Lmin)
    assert_allclose(x, [0.50, 0.50])
    assert (stepper.naccepts, stepper.nrejects) == (0, 4), (stepper.naccepts,
                                                            stepper.nrejects)
    assert stepper.isteps == 4, stepper.isteps
Esempio n. 2
0
def test_reversible_gradient(plot=False):
    def loglike(x):
        x, y = x.transpose()
        return -0.5 * (x**2 + ((y - 0.5) / 0.2)**2)

    def transform(u):
        return u

    Lmin = -0.5

    for i in [84] + list(range(1, 100)):
        print("setting seed = %d" % i)
        np.random.seed(i)
        points = np.random.uniform(size=(10000, 2))
        L = loglike(points)
        mask = L > Lmin
        points = points[mask, :][:100, :]
        active_u = points
        active_values = L[mask][:100]

        transformLayer = AffineLayer(wrapped_dims=[])
        transformLayer.optimize(points, points)
        region = MLFriends(points, transformLayer)
        region.maxradiussq, region.enlarge = region.compute_enlargement(
            nbootstraps=30)
        region.create_ellipsoid()
        nclusters = transformLayer.nclusters
        assert nclusters == 1
        assert np.allclose(region.unormed,
                           region.transformLayer.transform(
                               points)), "transform should be reproducible"
        assert region.inside(
            points).all(), "live points should lie near live points"

        if i == 84:
            v = np.array([0.03477044, -0.01977415])
            reflpoint = np.array([0.09304075, 0.29114574])
        elif i == 4:
            v = np.array([0.03949306, -0.00634806])
            reflpoint = np.array([0.9934771, 0.55358031])

        else:
            v = np.random.normal(size=2)
            v /= (v**2).sum()**0.5
            v *= 0.04
            j = np.random.randint(len(active_u))
            reflpoint = np.random.normal(active_u[j, :], 0.04)
            if not (reflpoint < 1).all() and not (reflpoint > 0).all():
                continue

        bpts = region.transformLayer.transform(reflpoint).reshape((1, -1))
        tt = get_sphere_tangents(region.unormed, bpts)
        t = region.transformLayer.untransform(tt * 1e-3 +
                                              region.unormed) - region.u
        # compute new vector
        normal = t / norm(t, axis=1).reshape((-1, 1))
        print("reflecting at  ", reflpoint, "with direction", v)
        mask_forward1, angles, anglesnew = get_reflection_angles(normal, v)
        if mask_forward1.any():
            j = np.argmin(
                ((region.unormed[mask_forward1, :] - bpts)**2).sum(axis=1))
            k = np.arange(len(normal))[mask_forward1][j]
            angles_used = angles[k]
            normal_used = normal[k, :]
            print("chose normal", normal_used, k)
            #chosen_point = region.u[k,:]
            vnew = -(v - 2 * angles_used * normal_used)
            assert vnew.shape == v.shape

            mask_forward2, angles2, anglesnew2 = get_reflection_angles(
                normal, vnew)
            #j2 = np.argmin(((region.unormed[mask_forward2,:] - bpts)**2).sum(axis=1))
            #chosen_point2 = region.u[mask_forward2,:][0,:]
            #assert j2 == j, (j2, j)
            assert mask_forward2[k]
            #assert_allclose(chosen_point, chosen_point2)

            #for m, a, b, m2, a2, b2 in zip(mask_forward1, angles, anglesnew, mask_forward2, angles2, anglesnew2):
            #    if m != m2:
            #        print('  ', m, a, b, m2, a2, b2)

            #print("using normal", normal)
            #print("changed v from", v, "to", vnew)

            #angles2 = -(normal * (vnew / norm(vnew))).sum(axis=1)
            #mask_forward2 = angles < 0
            if plot:
                plt.figure(figsize=(5, 5))
                plt.title('%d' % mask_forward1.sum())
                plt.plot((reflpoint + v)[0], (reflpoint + v)[1],
                         '^',
                         color='orange')
                plt.plot((reflpoint + vnew)[:, 0], (reflpoint + vnew)[:, 1],
                         '^ ',
                         color='lime')
                plt.plot(reflpoint[0], reflpoint[1], '^ ', color='r')
                plt.plot(region.u[:, 0], region.u[:, 1], 'x ', ms=2, color='k')
                plt.plot(region.u[mask_forward1, 0],
                         region.u[mask_forward1, 1],
                         'o ',
                         ms=6,
                         mfc='None',
                         mec='b')
                plt.plot(region.u[mask_forward2, 0],
                         region.u[mask_forward2, 1],
                         's ',
                         ms=8,
                         mfc='None',
                         mec='g')
                plt.xlim(0, 1)
                plt.ylim(0, 1)
                plt.savefig('test_flatnuts_reversible_gradient_%d.png' % i,
                            bbox_inches='tight')
                plt.close()
            assert mask_forward1[k] == mask_forward2[k], (mask_forward1[k],
                                                          mask_forward2[k])

            print("reflecting at  ", reflpoint, "with direction", v)
            # make that step, then try to go back
            j = np.arange(len(normal))[mask_forward1][0]
            normal = normal[j, :]
            angles = (normal * (v / norm(v))).sum()
            v2 = v - 2 * angle(normal, v) * normal

            print("reflecting with", normal, "new direction", v2)

            #newpoint = reflpoint + v2
            #angles2 = (normal * (v2 / norm(v2))).sum()
            v3 = v2 - 2 * angle(normal, v2) * normal

            print("re-reflecting gives direction", v3)
            assert_allclose(v3, v)

            print()
            print("FORWARD:", v, reflpoint)
            samplingpath = SamplingPath(reflpoint - v, v, active_values[0])
            contourpath = ContourSamplingPath(samplingpath, region)
            normal = contourpath.gradient(reflpoint)
            if normal is not None:
                assert normal.shape == v.shape, (normal.shape, v.shape)

                print("BACKWARD:", v, reflpoint)
                v2 = -(v - 2 * angle(normal, v) * normal)
                normal2 = contourpath.gradient(reflpoint)
                assert_allclose(normal, normal2)
                normal2 = normal
                v3 = -(v2 - 2 * angle(normal2, v2) * normal2)
                assert_allclose(v3, v)
Esempio n. 3
0
class SamplingPathStepSampler(StepSampler):
    """Step sampler on a sampling path."""

    def __init__(self, nresets, nsteps, scale=1.0, balance=0.01, nudge=1.1, log=False):
        """Initialise sampler.

        Parameters
        ------------
        nresets: int
            after this many iterations, select a new direction
        nsteps: int
            how many steps to make in total
        scale: float
            initial step size
        balance: float
            acceptance rate to target
            if below, scale is increased, if above, scale is decreased
        nudge: float
            factor for increasing scale (must be >=1)
            nudge=1 implies no step size adaptation.

        """
        StepSampler.__init__(self, nsteps=nsteps)
        # self.lasti = None
        self.path = None
        self.nresets = nresets
        # initial step scale in transformed space
        self.scale = scale
        # fraction of times a reject is expected
        self.balance = balance
        # relative increase in step scale
        self.nudge = nudge
        assert nudge >= 1
        self.log = log
        self.grad_function = None
        self.istep = 0
        self.iresets = 0
        self.start()
        self.terminate_path()
        self.logstat_labels = ['acceptance rate', 'reflection rate', 'scale', 'nstuck']

    def __str__(self):
        """Get string representation."""
        return '(nsteps=%d, nresets=%d, AR=%d%%)' % (
            type(self).__name__, self.nsteps, self.nresets, (1 - self.balance) * 100)

    def start(self):
        """Start sampler, reset all counters."""
        if hasattr(self, 'naccepts') and self.nrejects + self.naccepts > 0:
            nr, na = self.nrejects, self.naccepts
            self.logstat.append([
                self.naccepts / (self.nrejects + self.naccepts),
                self.nreflects / (self.nreflects + self.nrejects + self.naccepts),
                self.scale, self.nstuck])
        self.nrejects = 0
        self.naccepts = 0
        self.nreflects = 0
        self.nstuck = 0
        self.istep = 0
        self.iresets = 0
        self.noutside_regions = 0
        self.last = None, None
        self.history = []

        self.direction = +1
        self.deadends = set()
        self.path = None

    def start_path(self, ui, region):
        """Start new trajectory path."""
        # print("new direction:", self.scale, self.noutside_regions, self.nrejects, self.naccepts)

        v = self.generate_direction(ui, region, scale=self.scale)
        assert (v**2).sum() > 0, (v, self.scale)
        assert region.inside(ui.reshape((1, -1))).all(), ui
        self.path = ContourSamplingPath(SamplingPath(ui, v, 0.0), region)
        if self.grad_function is not None:
            self.path.gradient = self.grad_function

        if not (ui > 0).all() or not (ui < 1).all() or not region.inside(ui.reshape((1, -1))):
            assert False, ui

        self.direction = +1
        self.lasti = 0
        self.cache = {0: (True, ui, self.last[1])}
        self.deadends = set()
        # self.iresets += 1
        if self.log:
            print()
            print("starting new direction", v, 'from', ui)

    def terminate_path(self):
        """Terminate current path, and reset path counting variable."""
        # check if we went anywhere:
        if -1 in self.deadends and +1 in self.deadends:
            # self.scale /= self.nudge
            self.nstuck += 1

        # self.nrejects = 0
        # self.naccepts = 0
        # self.istep = 0
        # self.noutside_regions = 0
        self.direction = +1
        self.deadends = set()
        self.path = None
        self.iresets += 1
        if self.log:
            print("reset %d" % self.iresets)

    def set_gradient(self, grad_function):
        """Set gradient function."""
        print("set gradient function to %s" % grad_function.__name__)

        def plot_gradient_wrapper(x, plot=False):
            """wrapper that makes plots (when desired)"""
            v = grad_function(x)
            if plot:
                plt.plot(x[0], x[1], '+ ', color='k', ms=10)
                plt.plot([x[0], v[0] * 1e-2 + x[0]],
                         [x[1], v[1] * 1e-2 + x[1]], color='gray')
            return v
        self.grad_function = plot_gradient_wrapper

    def generate_direction(self, ui, region, scale):
        """Choose a random axis from region.transformLayer."""
        return generate_region_random_direction(ui, region, scale=scale)
        # return generate_random_direction(ui, region, scale=scale)

    def adjust_accept(self, accepted, unew, pnew, Lnew, nc):
        """Adjust proposal given that we have been *accepted* at a new point after *nc* calls."""
        self.cache[self.nexti] = (accepted, unew, Lnew)
        if accepted:
            # start at new point next time
            self.lasti = self.nexti
            self.last = unew, Lnew
            self.history.append((unew, Lnew))
            self.naccepts += 1
        else:
            # continue on current point, do not update self.last
            self.nrejects += 1
            self.history.append((unew, Lnew))
            assert self.scale > 1e-10, (self.scale, self.istep, self.nrejects)

    def adjust_outside_region(self):
        """Adjust proposal given that we landed outside region."""
        self.noutside_regions += 1
        self.nrejects += 1

    def adjust_scale(self, maxlength):
        """Adjust scale, but not above maxlength."""
        # print("%2d | %2d | %2d | %2d %2d %2d %2d | %f"  % (self.iresets, self.istep,
        #     len(self.history), self.naccepts, self.nrejects,
        #     self.noutside_regions, self.nstuck, self.scale))
        assert len(self.history) > 1

        if self.naccepts < (self.nrejects + self.naccepts) * self.balance:
            if self.log:
                print("adjusting scale %f down: istep=%d inside=%d outside=%d region=%d nstuck=%d" % (
                    self.scale, len(self.history), self.naccepts, self.nrejects, self.noutside_regions, self.nstuck))
            self.scale /= self.nudge
        else:
            if self.scale < maxlength or True:
                if self.log:
                    print("adjusting scale %f up: istep=%d inside=%d outside=%d region=%d nstuck=%d" % (
                        self.scale, len(self.history), self.naccepts, self.nrejects, self.noutside_regions, self.nstuck))
                self.scale *= self.nudge
        assert self.scale > 1e-10, self.scale

    def movei(self, ui, region, ndraw=1, plot=False):
        """Make a move and return the proposed index."""
        if self.path is not None:
            if self.lasti - 1 in self.deadends and self.lasti + 1 in self.deadends:
                # stuck, cannot go anywhere. Stay.
                self.nexti = self.lasti
                return self.nexti

        if self.path is None:
            self.start_path(ui, region)

        assert not (self.lasti - 1 in self.deadends and self.lasti + 1 in self.deadends), \
            (self.deadends, self.lasti)
        if self.lasti + self.direction in self.deadends:
            self.direction *= -1

        self.nexti = self.lasti + self.direction
        # print("movei", self.nexti)
        # self.nexti = self.lasti + np.random.randint(0, 2) * 2 - 1
        return self.nexti

    def move(self, ui, region, ndraw=1, plot=False):
        """Advance move."""
        u, v = self.get_point(self.movei(ui, region=region, ndraw=ndraw, plot=plot))
        return u.reshape((1, -1))

    def reflect(self, reflpoint, v, region, plot=False):
        """Reflect at *reflpoint* going in direction *v*. Return new direction."""
        normal = self.path.gradient(reflpoint, plot=plot)
        if normal is None:
            return -v
        return v - 2 * (normal * v).sum() * normal

    def get_point(self, inew):
        """Get point corresponding to index *inew*."""
        ipoints = [(u, v) for i, u, p, v in self.path.points if i == inew]
        if len(ipoints) == 0:
            # print("getting point %d" % inew, self.path.points) #, "->", self.path.extrapolate(self.nexti))
            return self.path.extrapolate(inew)
        else:
            return ipoints[0]

    def __next__(self, region, Lmin, us, Ls, transform, loglike, ndraw=40, plot=False):
        """Get next point.

        Parameters
        ----------
        region: MLFriends
            region.
        Lmin: float
            loglikelihood threshold
        us: array of vectors
            current live points
        Ls: array of floats
            current live point likelihoods
        transform: function
            transform function
        loglike: function
            loglikelihood function
        ndraw: int
            number of draws to attempt simultaneously.
        plot: bool
            whether to produce debug plots.

        """
        # find most recent point in history conforming to current Lmin
        ui, Li = self.last
        if Li is not None and not Li >= Lmin:
            if self.log:
                print("wandered out of L constraint; resetting", ui[0])
            ui, Li = None, None

        if Li is not None and not region.inside(ui.reshape((1,-1))):
            # region was updated and we are not inside anymore
            # so reset
            if self.log:
                print("region change; resetting")
            ui, Li = None, None

        if Li is None and self.history:
            # try to resume from a previous point above the current contour
            for uj, Lj in self.history[::-1]:
                if Lj >= Lmin and region.inside(uj.reshape((1,-1))):
                    ui, Li = uj, Lj
                    if self.log:
                        print("recovered using history", ui)
                    break

        # select starting point
        if Li is None:
            # choose a new random starting point
            mask = region.inside(us)
            assert mask.any(), (
                "None of the live points satisfies the current region!",
                region.maxradiussq, region.u, region.unormed, us)
            i = np.random.randint(mask.sum())
            self.starti = i
            ui = us[mask,:][i]
            if self.log:
                print("starting at", ui)
            assert np.logical_and(ui > 0, ui < 1).all(), ui
            Li = Ls[mask][i]
            self.start()
            self.history.append((ui, Li))
            self.last = (ui, Li)

        inew = self.movei(ui, region, ndraw=ndraw)
        if self.log:
            print("i: %d->%d (step %d)" % (self.lasti, inew, self.istep))

        # uold, _ = self.get_point(self.lasti)
        _, uold, Lold = self.cache[self.lasti]
        if plot:
            plt.plot(uold[0], uold[1], 'd', color='brown', ms=4)

        uret, pret, Lret = uold, transform(uold), Lold

        nc = 0
        if inew != self.lasti:
            accept = False
            if inew not in self.cache:
                unew, _ = self.get_point(inew)
                if plot:
                    plt.plot(unew[0], unew[1], 'x', color='k', ms=4)
                accept = np.logical_and(unew > 0, unew < 1).all() and region.inside(unew.reshape((1, -1)))
                if accept:
                    if plot:
                        plt.plot(unew[0], unew[1], '+', color='orange', ms=4)
                    pnew = transform(unew)
                    Lnew = loglike(pnew.reshape((1, -1)))
                    nc = 1
                else:
                    Lnew = -np.inf
                    if self.log:
                        print("outside region: ", unew, "from", ui)
                    self.deadends.add(inew)
                    self.adjust_outside_region()
            else:
                _, unew, Lnew = self.cache[self.nexti]
                # if plot:
                #    plt.plot(unew[0], unew[1], 's', color='r', ms=2)

            if self.log:
                print("   suggested point:", unew)
            pnew = transform(unew)

            if Lnew >= Lmin:
                if self.log:
                    print(" -> inside.")
                if plot:
                    plt.plot(unew[0], unew[1], 'o', color='g', ms=4)
                self.adjust_accept(True, unew, pnew, Lnew, nc)
                uret, pret, Lret = unew, pnew, Lnew
            else:
                if plot:
                    plt.plot(unew[0], unew[1], '+', color='k', ms=2, alpha=0.3)
                if self.log:
                    print(" -> outside.")
                jump_successful = False
                if inew not in self.cache and inew not in self.deadends:
                    # first time we try to go beyond
                    # try to reflect:
                    reflpoint, v = self.get_point(inew)
                    if self.log:
                        print("    trying to reflect at", reflpoint)
                    self.nreflects += 1

                    sign = -1 if inew < 0 else +1
                    vnew = self.reflect(reflpoint, v * sign, region=region) * sign

                    xk, vk = extrapolate_ahead(sign, reflpoint, vnew, contourpath=self.path)

                    if plot:
                        plt.plot([reflpoint[0], (-v + reflpoint)[0]], [reflpoint[1], (-v + reflpoint)[1]], '-', color='k', lw=0.5, alpha=0.5)
                        plt.plot([reflpoint[0], (vnew + reflpoint)[0]], [reflpoint[1], (vnew + reflpoint)[1]], '-', color='k', lw=1)

                    if self.log:
                        print("    trying", xk)
                    accept = np.logical_and(xk > 0, xk < 1).all() and region.inside(xk.reshape((1, -1)))
                    if accept:
                        pk = transform(xk)
                        Lk = loglike(pk.reshape((1, -1)))[0]
                        nc += 1
                        if Lk >= Lmin:
                            jump_successful = True
                            uret, pret, Lret = xk, pk, Lk
                            if self.log:
                                print("successful reflect!")
                            self.path.add(inew, xk, vk, Lk)
                            self.adjust_accept(True, xk, pk, Lk, nc)
                        else:
                            if self.log:
                                print("unsuccessful reflect")
                            self.adjust_accept(False, xk, pk, Lk, nc)
                    else:
                        if self.log:
                            print("unsuccessful reflect out of region")
                        self.adjust_outside_region()

                    if plot:
                        plt.plot(xk[0], xk[1], 'x', color='g' if jump_successful else 'r', ms=8)

                    if not jump_successful:
                        # unsuccessful. mark as deadend
                        self.deadends.add(inew)
                        # print("deadends:", self.deadends)
                else:
                    self.adjust_accept(False, uret, pret, Lret, nc)

                # self.adjust_accept(False, unew, pnew, Lnew, nc)
                assert inew in self.cache or inew in self.deadends, (inew in self.cache, inew in self.deadends)
        else:
            # stuck, proposal did not move us
            self.nstuck += 1
            self.adjust_accept(False, uret, pret, Lret, nc)

        # increase step count
        self.istep += 1
        if self.istep == self.nsteps:
            if self.log:
                print("triggering re-orientation")
                # reset path so we go in a new direction
            self.terminate_path()
            self.istep = 0

        # if had enough resets, return final point
        if self.iresets >= self.nresets:
            if self.log:
                print("walked %d paths; returning sample" % self.iresets)
            self.adjust_scale(maxlength=len(uret)**0.5)
            self.start()
            self.last = None, None
            return uret, pret, Lret, nc

        # do not have a independent sample yet
        return None, None, None, nc