Esempio n. 1
0
def test_rest(x, y):

    print('Random under-sampling')
    US = UnderSampler(verbose=verbose)
    usx, usy = US.fit_transform(x, y)

    print('Tomek links')
    TL = TomekLinks(verbose=verbose)
    tlx, tly = TL.fit_transform(x, y)

    print('Clustering centroids')
    CC = ClusterCentroids(verbose=verbose)
    ccx, ccy = CC.fit_transform(x, y)

    print('NearMiss-1')
    NM1 = NearMiss(version=1, verbose=verbose)
    nm1x, nm1y = NM1.fit_transform(x, y)

    print('NearMiss-2')
    NM2 = NearMiss(version=2, verbose=verbose)
    nm2x, nm2y = NM2.fit_transform(x, y)

    print('NearMiss-3')
    NM3 = NearMiss(version=3, verbose=verbose)
    nm3x, nm3y = NM3.fit_transform(x, y)

    print('Neighboorhood Cleaning Rule')
    NCR = NeighbourhoodCleaningRule(verbose=verbose)
    ncrx, ncry = NCR.fit_transform(x, y)

    print('Random over-sampling')
    OS = OverSampler(verbose=verbose)
    ox, oy = OS.fit_transform(x, y)

    print('SMOTE Tomek links')
    STK = SMOTETomek(verbose=verbose)
    stkx, stky = STK.fit_transform(x, y)

    print('SMOTE ENN')
    SENN = SMOTEENN(verbose=verbose)
    sennx, senny = SENN.fit_transform(x, y)

    print('EasyEnsemble')
    EE = EasyEnsemble(verbose=verbose)
    eex, eey = EE.fit_transform(x, y)
Esempio n. 2
0
def sampling():
    verbose = False
    y = np.bincount(target_train1)
    print y
    ratio = float(y[2]) / float(y[1])
    # 'Random over-sampling'
    OS = OverSampler(ratio=ratio, verbose=verbose)
    osx, osy = OS.fit_transform(data_train1, target_train1)
    random_methods(osx,osy)
    # 'SMOTE'
    smote = SMOTE(ratio=ratio, verbose=verbose, kind='regular')
    smox, smoy = smote.fit_transform(data_train1, target_train1)
    random_methods(smox,smoy)
    # 'SMOTE bordeline 1'
    bsmote1 = SMOTE(ratio=ratio, verbose=verbose, kind='borderline1')
    bs1x, bs1y = bsmote1.fit_transform(data_train, target_train)
    random_methods(bs1x,bs1y)
    # 'SMOTE bordeline 2'
    bsmote2 = SMOTE(ratio=ratio, verbose=verbose, kind='borderline2')
    bs2x, bs2y = bsmote2.fit_transform(data_train1, target_train1)
    random_methods(bs2x,bs2y)
    # 'SMOTE SVM'
    svm_args={'class_weight' : 'auto'}
    svmsmote = SMOTE(ratio=ratio, verbose=verbose, kind='svm', **svm_args)
    svsx, svsy = svmsmote.fit_transform(data_train1, target_train1)
    random_methods(svsx,svsy)
    # 'SMOTE Tomek links'
    STK = SMOTETomek(ratio=ratio, verbose=verbose)
    stkx, stky = STK.fit_transform(data_train1, target_train1)
    random_methods(stkx,stky)
    # 'SMOTE ENN'
    SENN = SMOTEENN(ratio=ratio, verbose=verbose)
    ennx, enny = SENN.fit_transform(data_train1, target_train1)
    random_methods(ennx,enny)
    # 'EasyEnsemble'
    EE = EasyEnsemble(verbose=verbose)
    eex, eey = EE.fit_transform(data_train1, target_train1)
    random_methods(eex,eey)
    # 'BalanceCascade'
    BS = BalanceCascade(verbose=verbose)
    bsx, bsy = BS.fit_transform(data_train1, target_train1)
    random_methods(bsx,bsy)
 def smote_enn(self):
     SENN = SMOTEENN(ratio=self._ratio, verbose=self.verbose)
     ennx, enny = SENN.fit_transform(self.x, self.y)
     return ennx. enny
Esempio n. 4
0
                header=None,
                index_col=False,
                names=colnames,
                skiprows=[0],
                usecols=[8])
y = y['violation'].values
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.333, random_state=0)
main_x = X.values
main_y = y

verbose = False
ratio = float(np.count_nonzero(y == 1)) / float(np.count_nonzero(y == 0))

# 'SMOTE ENN'
SENN = SMOTEENN(ratio=ratio, verbose=verbose)
x, y = SENN.fit_transform(main_x, main_y)

ratio = float(np.count_nonzero(y == 1)) / float(np.count_nonzero(y == 0))
X_train, X_test, y_train, y_test = train_test_split(x,
                                                    y,
                                                    test_size=.333,
                                                    random_state=0)

from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score

clf = RandomForestClassifier(n_estimators=10)
scores = cross_val_score(clf, X_test, y_test)

y_pred = clf.fit(X_train, y_train).predict(X_test)
y_score = clf.fit(X_train, y_train).predict_proba(X_test)[:, 1]
Esempio n. 5
0
# 'SMOTE bordeline 1'
bsmote1 = SMOTE(ratio=ratio, verbose=verbose, kind='borderline1')
bs1x, bs1y = bsmote1.fit_transform(x, y)
# 'SMOTE bordeline 2'
bsmote2 = SMOTE(ratio=ratio, verbose=verbose, kind='borderline2')
bs2x, bs2y = bsmote2.fit_transform(x, y)
# 'SMOTE SVM'
svm_args={'class_weight' : 'auto'}
svmsmote = SMOTE(ratio=ratio, verbose=verbose, kind='svm', **svm_args)
svsx, svsy = svmsmote.fit_transform(x, y)
# 'SMOTE Tomek links'
STK = SMOTETomek(ratio=ratio, verbose=verbose)
stkx, stky = STK.fit_transform(x, y)
# 'SMOTE ENN'
SENN = SMOTEENN(ratio=ratio, verbose=verbose)
ennx, enny = SENN.fit_transform(x, y)
# 'EasyEnsemble'
EE = EasyEnsemble(verbose=verbose)
eex, eey = EE.fit_transform(x, y)
# 'BalanceCascade'
BS = BalanceCascade(verbose=verbose)
bsx, bsy = BS.fit_transform(x, y)

# Apply PCA to be able to visualise the results
osx_vis = pca.transform(osx)
smox_vis = pca.transform(smox)
bs1x_vis = pca.transform(bs1x)
bs2x_vis = pca.transform(bs2x)
svsx_vis = pca.transform(svsx)
stkx_vis = pca.transform(stkx)
ennx_vis = pca.transform(ennx)