Esempio n. 1
0
def get_p4(name):
    # Given an alias like "els_p4", return a jagged array of LorentzVectors
    vx,vy,vz,vt = t.arrays([
        alias_lut[name]+".fCoordinates.fX",
        alias_lut[name]+".fCoordinates.fY",
        alias_lut[name]+".fCoordinates.fZ",
        alias_lut[name]+".fCoordinates.fT",
        ], outputtype=tuple)
    return TLorentzVectorArray.from_cartesian(vx,vy,vz,vt)
Esempio n. 2
0
 def _build_graph(self, constits):
     constits_p4 = TLorentzVectorArray.from_cartesian(*list(zip(*constits)))
     jet_p4 = constits_p4.sum()
     spatialCoord = np.stack([
         delta_eta_reflect(constits_p4, jet_p4),
         constits_p4.delta_phi(jet_p4)
     ],
                             axis=1)
     energyFeatures = np.log(
         np.stack([constits_p4.pt, constits_p4.energy], axis=1))
     features = np.concatenate([spatialCoord, energyFeatures], axis=1)
     ret = dgl.DGLGraph()
     ret.add_nodes(
         len(constits), {
             'coordinates': torch.tensor(spatialCoord, dtype=torch.float32),
             'features': torch.tensor(features, dtype=torch.float32)
         })
     # print(ret.number_of_nodes())
     return ret
Esempio n. 3
0
 def get_baseline(self, check_labels, j, taus, etas, phis, pts):
     baselines = np.empty((0, 5))
     m = TLorentzVectorArray.from_cartesian(j.fX, j.fY, j.fZ, j.fE).mass
     m = np.nan_to_num(m)
     taus = np.nan_to_num(taus)
     taus = np.where(taus == 0, 10**-6, taus)
     tau21 = taus[:, 1] / taus[:, 0]
     tau32 = taus[:, 2] / taus[:, 1]
     for label in check_labels:
         jid = self.constants.settings[label]['id']
         cuts_m = self.constants.settings[label]['cut_m']
         mask = (m > cuts_m[0]) & (m < cuts_m[1])
         scores = tau32 if label == 't' else tau21
         for e, p, pt, s in zip(etas[mask],
                                phis[mask],
                                pts[mask],
                                scores[mask]):
             if e < self.edges_eta[0] or e > self.edges_eta[-1]:
                 continue
             e = np.argmax(self.edges_eta >= e) - 1
             p = np.argmax(self.edges_phi >= p) - 1
             baselines = np.vstack((baselines, [jid, e, p, pt, s]))
     return baselines