Esempio n. 1
0
def create_catalog(mseed_file):
    cat = read_events(mseed_file.with_suffix('.xml'))
    if cat[0].preferred_origin() is not None:
        evaluation_mode = cat[0].preferred_origin().evaluation_mode
    else:
        evaluation_mode = cat[0].origins[-1].evaluation_mode
    return (str(mseed_file), settings.event_type_lookup[cat[0]['event_type']],
            evaluation_mode)
def get_catalog(event_file, inventory):
    cat = read_events(event_file)
    for i, pick in enumerate(cat[0].picks):
        for sensor in inventory.sensors:
            if sensor.alternate_code == pick.waveform_id.station_code:
                cat[0].picks[i].waveform_id.network_code = inventory[0].code
                cat[0].picks[i].waveform_id.station_code = sensor.station.code
                cat[0].picks[i].waveform_id.location_code = \
                    sensor.location_code
                cat[0].picks[i].waveform_id.channel_code = \
                    sensor.channels[0].code
                break
    return cat
def create_training_signal(waveform_file):
    # logger.info('here')
    waveform_file_path = input_data_dir / waveform_file
    cat = read_events(waveform_file_path.with_suffix('.xml'))
    st = read(waveform_file_path)

    event_time = cat[0].preferred_origin().time.timestamp

    try:
        st = st.detrend('demean').detrend('linear').taper(
            max_percentage=0.1,
            max_length=0.01).resample(sampling_rate=sampling_rate)
    except Exception as e:
        logger.error(e)
        trs = []
        for tr in st:
            if np.nan in tr.data:
                continue
            trs.append(tr.copy())
        st.traces = trs

    trs = []
    snrs = []
    pick_times = []
    logger.info(event_type_lookup[cat[0].event_type])
    if event_type_lookup[cat[0].event_type] == 'seismic event':
        for arrival in cat[0].preferred_origin().arrivals:
            site = arrival.pick.site
            for tr in st.select(site=site):
                snr = calculate_snr(tr,
                                    arrival.pick.time,
                                    pre_wl=20e-3,
                                    post_wl=20e-3)
                if snr < snr_threshold:
                    continue
                tr.trim(starttime=tr.stats.starttime,
                        endtime=tr.stats.starttime + sequence_length_second,
                        pad=True,
                        fill_value=0)
                trs.append(
                    tr.copy().resample(sampling_rate=int(sampling_rate)))
                snrs.append(snr)
                pick_times.append(arrival.pick.time)

    else:
        return

    ct = 0
    for tr, pick_time in zip(trs, pick_times):
        for i in range(0, 5):
            try:

                start = np.random.randint(
                    0, number_sample - int(0.25 * number_sample))

                pick_sample = int(
                    (pick_time - tr.stats.starttime) * tr.stats.sampling_rate)

                start_sample = int(pick_sample - start)

                data = tr.data[start_sample:start_sample + number_sample]
                data = data - np.mean(data)
                data = np.abs(data) / np.abs(data).max()
                pick = start

                out_dict = {'data': data, 'pick': pick}

                out_dir = output_data_dir
                out_dir.mkdir(parents=True, exist_ok=True)
                filename = f'{event_time:0.0f}_{tr.stats.site}_' \
                           f'{tr.stats.channel}_{i}.pickle'

                with open(out_dir / filename, 'wb') as file_out:
                    pickle.dump(out_dict, file_out)
            except Exception as e:
                logger.error(e)
def get_event_id(filename):
    cat = read_events(filename)
    return str(filename.stem), cat[0].resource_id.id
Esempio n. 5
0
#         # plt.clf()
#         # plt.imshow(spec)
#         # plt.pause(0.1)
#
#         # prediction = ec.predict_spectrogram(spec)
#         # print(prediction)
#
#         # input()
#
#         specs.append(spec)
#
#     return specs

for fle in tqdm(glob('/data_1/ot-reprocessed-data/*.xml')):
    try:
        cat, st = read_events(fle), read(fle.replace('.xml', '.mseed'))
    except Exception as e:
        logger.error(e)
        continue

    predictions = ec2.predict(st)

    n_seismic_events = (
        predictions[0] == event_dict['seismic event']).sum().item()
    n_blasts = (predictions[0] == event_dict['blast']).sum().item()

    n_e_b = n_seismic_events + n_blasts
    if n_e_b >= threshold:
        if n_seismic_events / n_e_b >= 0.7:
            predicted_event_class = 'seismic event'
        elif n_blasts / n_e_b >= 0.7:
def create_training_image(waveform_file):
    # logger.info('here')
    waveform_file_path = input_data_dir / waveform_file
    cat = read_events(waveform_file_path.with_suffix('.xml'))
    st = read(waveform_file_path)

    if cat[0].preferred_origin() is not None:
        origin = cat[0].preferred_origin()
    else:
        origin = cat[0].origins[-1]

    if origin.evaluation_mode == 'automatic':
        return

    event_time = origin.time.timestamp

    try:
        st = st.detrend('demean').detrend(
            'linear').taper(max_percentage=0.1,
                            max_length=0.01).resample(
            sampling_rate=sampling_rate)
    except Exception as e:
        logger.error(e)
        trs = []
        for tr in st:
            if np.nan in tr.data:
                continue
            trs.append(tr.copy())
        st.traces = trs

    trs = []
    logger.info(event_type_lookup[cat[0].event_type])
    if event_type_lookup[cat[0].event_type] == 'seismic event':
        for arrival in cat[0].preferred_origin().arrivals:
            site = arrival.pick.site
            for tr in st.select(site=site).copy():
                # filtering out low frequency before calculating the SNR
                tr = tr.filter('highpass', freq=100)
                snr = calculate_snr(tr, arrival.pick.time,
                                    pre_wl=20e-3,
                                    post_wl=20e-3)
                if arrival.pick.evaluation_mode == 'automatic':
                    if snr < snr_threshold:
                        continue
                tr.trim(starttime=tr.stats.starttime,
                        endtime=tr.stats.starttime +
                        sequence_length_second,
                        pad=True,
                        fill_value=0)
                trs.append(tr.copy().resample(sampling_rate=
                                              int(sampling_rate)))

    elif event_type_lookup[cat[0].event_type] == 'blast':
        for tr in st:
            if (np.max(np.abs(tr.data)) / np.std(tr.data)) < 6:
                continue
            trs.append(tr.trim(endtime=tr.stats.starttime +
                               sequence_length_second))

    else:
        for tr in st:
            trs.append(tr.trim(endtime=tr.stats.starttime +
                               sequence_length_second))

    ct = 0
    for tr in trs:
        try:
            spec = spectrogram(tr)
        except Exception as e:
            logger.error(e)
            ct += 1
            logger.info(f'{ct} exceptions')
            return
        spec = (spec / np.max(spec)) * 255
        img = Image.fromarray(np.array(spec.tolist()).astype(np.uint8))

        filename = f'{event_time:0.0f}_{tr.stats.site}_' \
                   f'{tr.stats.channel}.jpg'

        out_dir = (output_data_dir /
                   event_type_lookup[cat[0].event_type])

        out_dir.mkdir(parents=True, exist_ok=True)

        out_file_name = out_dir / filename
        ImageOps.grayscale(img).save(out_file_name, format='JPEG')
Esempio n. 7
0
def create_training_dataset(waveform_file):
    # logger.info('here')
    waveform_file_path = input_data_dir / waveform_file
    cat = read_events(waveform_file_path.with_suffix('.xml'))
    st = read(waveform_file_path)

    event_time = cat[0].preferred_origin().time.timestamp

    trs = []
    for tr in st.copy():
        if np.any(np.isnan(tr.data)):
            continue
        trs.append(tr.copy())

    st2 = Stream(traces=trs)

    # try:
    st2 = st2.detrend('demean').detrend('linear')
    st2 = st2.taper(max_percentage=0.1, max_length=0.01)
    st2 = st2.resample(sampling_rate=sampling_rate)
    # except Exception as e:
    #     logger.error(e)
    #     trs = []
    #     for tr in st.copy():
    #         try:
    #             tr = tr.detrend('demean').detrend('linear')
    #             tr = tr.taper(max_percentage=0.1,
    #                           max_length=0.01)
    #             tr = tr.resample(sampling_rate=sampling_rate)
    #             trs.append(tr.copy())
    #         except Exception as e:
    #             logger.error(e)
    #             continue
    #
    #     st2 = Stream(traces=trs)

    trs = []
    # logger.info(event_type_lookup[cat[0].event_type])
    if event_type_lookup[cat[0].event_type] == 'seismic event':
        for arrival in cat[0].preferred_origin().arrivals:
            site = arrival.pick.site
            for tr in st2.select(site=site).copy():
                # filtering out low frequency before calculating the SNR
                tr = tr.filter('highpass', freq=100)
                snr = calculate_snr(tr,
                                    arrival.pick.time,
                                    pre_wl=20e-3,
                                    post_wl=20e-3)
                if arrival.pick.evaluation_mode == 'automatic':
                    if snr < snr_threshold:
                        continue
                tr.trim(starttime=tr.stats.starttime,
                        endtime=tr.stats.starttime + sequence_length_second,
                        pad=True,
                        fill_value=0)
                trs.append(
                    tr.copy().resample(sampling_rate=int(sampling_rate)))

    elif event_type_lookup[cat[0].event_type] == 'blast':
        for tr in st2:
            if (np.max(np.abs(tr.data)) / np.std(tr.data)) < 6:
                continue
            trs.append(
                tr.trim(endtime=tr.stats.starttime + sequence_length_second))

    else:
        for tr in st2:
            trs.append(
                tr.trim(endtime=tr.stats.starttime + sequence_length_second))

    ct = 0
    for tr in trs:
        event_type = event_type_lookup[cat[0].event_type]
        filename = f'{event_time:0.0f}_{tr.stats.site}_' \
                   f'{tr.stats.channel}.pickle'
        output_dir = output_data_dir / event_type
        output_file = output_dir / filename

        output_dir.mkdir(parents=True, exist_ok=True)

        out_dict = {
            'data': tr.data,
            'seismogram file': waveform_file_path,
            'event type': event_type_lookup[cat[0].event_type]
        }

        with open(output_file, 'wb') as f_out:
            pickle.dump(out_dict, f_out)