Esempio n. 1
0
def reverse_shared(num:int=1, time:float=0.1, pause:float=0.1, vms=None):
  assert vms, "vms is a mandatory argument"
  result = defaultdict(list)

  def measure(vm, r):
    ins, cycles = vm.stat(time)
    r[vm.bname] = ins / cycles

  for i in range(num):
    print("measure %s out of %s" % (i+1, num))
    for victim in vms:
      """victim is a VM that we are going to freeze"""
      shared, exklusiv = {}, {}
      # shared phase
      threadulator(measure, [(vm, shared) for vm in vms if vm != victim])
      # "stop victim" phase
      victim.freeze()
      threadulator(measure, [(vm, exklusiv) for vm in vms if vm != victim])
      victim.unfreeze()
      # calculate results
      try:
        for bench, pShared, pExcl in dictzip(shared, exklusiv):
          key = victim.bname, bench
          value = pShared / pExcl
          result[key].append(value)
      except KeyError:
        print("something was wrong, we lost a datapoint")
      sleep(pause)
  return result
Esempio n. 2
0
def distribution_with_subsampling(data, skip=22, mode='hist'):
  standard = data.standard
  withskip = data.withskip

  plots, labels = [], []
  tuples = []
  for test, st_ipcs, raw_skp in dictzip(standard, withskip):
      skp_ipc = []
      for skp in raw_skp:
        instr  = mean(skp['instructions'][skip:])
        cycles = mean(skp['cycles'][skip:])
        if not cycles:
          continue
        skp_ipc.append(instr/cycles)

      tuples.append((test, st_ipcs, skp_ipc))

  tuples = sorted(tuples, key=lambda x: x[0])
  for test, isolated, shared in tuples:
      # if prec >0.1: continue
      plots.append(isolated)
      plots.append(shared)
      labels.append(test)
  myboxplot(plots, labels=labels,
            legend=["frozen env meas. 50ms", "frozen with skip %sms" % (skip*2)])
Esempio n. 3
0
def compare(data1, data2, legend):
  assert data1, "data1 cannot be empty"
  assert data2, "data2 cannot be empty"
  def ipc(data): return [t[0]/t[1] for t in data]

  data, labels = [], []
  for test, p, s in sorted(dictzip(data1,data2)):
    print(test, p[:2], s[:2])
    labels.append(test)
    data.append(p)
    data.append(ipc(s))
    myboxplot(data, labels=labels, legend=legend, notch=True)
Esempio n. 4
0
def distribution(data, mode='hist'):
  data = pickle.load(open(data, 'rb'))
  pure = data.result.pure    # data from pure performance isolation
  quasi = data.result.quasi  # data from quasi isolation
  if mode == 'hist':
    for i, (test, ref, measurements) in enumerate(dictzip(pure, quasi)):
      # print(test, len(ref), len(measurements))
      print(ref)
      p.subplot(4,2,i+1)
      p.title(test)
      p.hist(ref, bins=50, label="real isolation", alpha=0.7)
      p.hist(measurements, bins=50, label="quasi-isolation", alpha=0.7)
      p.legend(loc="best")
      p.xlim(0,3)

  elif mode == 'boxplot':
    labels = []
    data = []
    for i, (test, ref, measurements) in enumerate(sorted(dictzip(pure, quasi))):
      labels.append(test)
      data.append(ref)
      data.append(measurements)
    box = myboxplot(data, labels=labels, notch=True)
Esempio n. 5
0
def analyze_reverse2(data):
  data = pickle.load(open(data, 'rb')).result
  isolated = data.isolated
  shared = data.shared
  plots, labels = [], []
  tuples = []
  for test, isolated, shared in dictzip(isolated, shared):
     prec = precision2(shared, isolated)
     tuples.append((test, isolated, shared, prec))
  tuples = sorted(tuples, key=lambda x: x[3])
  for test, isolated, shared, prec in tuples:
      # if prec >0.1: continue
      plots.append(isolated)
      plots.append(shared)
      labels.append("{} {:.1%}".format(test, prec))
  myboxplot(plots, labels=labels)
Esempio n. 6
0
def loosers(num:int=10, interval:int=100, pause:float=0.0, vms=None):
  """ Detect starving applications. """
  shared_perf = defaultdict(list)
  frozen_perf = defaultdict(list)
  while num>0:
    print(num, "measurements left")
    shared_sampling(num=10, interval=interval, pause=pause, result=shared_perf, vms=vms)
    freezing_sampling(num=10, interval=interval, pause=pause, result=frozen_perf, vms=vms)
    num -= 10

  result = {}
  for bench, sh_perf, fr_perf in dictzip(shared_perf, frozen_perf):
    ratio = mean(sh_perf) / mean(fr_perf)
    result[bench] = ratio
  print("our technique:")
  print(sorted(result.items(), key=lambda v: v[1]))

  return result
Esempio n. 7
0
def real_loosers3(num:int=10, interval:int=10*1000, pause:float=0.1, vms=None):
  """ Detect starving applications. Improved version """
  shared_perf = defaultdict(list)
  frozen_perf = defaultdict(list)
  prints("real_loosers3 iterations ", end="")
  for i,x in enumerate(range(num)):
    prints("{i}/{num}", end=" "); sys.stdout.flush()
    shared_thr_sampling(num=1, interval=interval, result=shared_perf, vms=vms)
    freezing_sampling(num=1,   interval=interval, pause=0.1, result=frozen_perf, vms=vms)
    sleep(pause)

  result = {}
  for vm, sh_perf, fr_perf in dictzip(shared_perf, frozen_perf):
    ratio = mean(sh_perf) / mean(fr_perf)
    result[vm] = ratio
  result = sorted(result.items(), key=lambda v: v[1])
  print("Loosers: straight forward technique:\n", result)

  return result, shared_perf, frozen_perf