Esempio n. 1
0
def state_zip_by_popdense(state_str, num_returns):
    search = SearchEngine()
    res = search.query(state=state_str,
                       sort_by=Zipcode.population_density,
                       ascending=False,
                       returns=num_returns)
    return [x.zipcode for x in res]
Esempio n. 2
0
def get_zipcode_of_richest_near_city(lat, lng):
    search = SearchEngine(simple_zipcode=True)
    zip = []
    radius = 25
    res = search.query(lat=lat,
                       lng=lng,
                       radius=radius,
                       sort_by=Zipcode.median_household_income,
                       ascending=True,
                       returns=25)
    for i in res:
        zip.append(i.zipcode)

    return zip
Esempio n. 3
0
def get_zipcode_of_richest_near_city(lat, lng):
    search = SearchEngine(simple_zipcode=True)
    zip=[]
    radius = 100
    res = search.query(
        lat=lat,
        lng=lng,
        radius=radius,
        sort_by=Zipcode.median_household_income,
        ascending=False,
        returns=100,
    )
    print(res)
    for i in res:
        zip.append(str(i.median_household_income) + " " + i.major_city)

    return zip
Esempio n. 4
0
def get_city_data():
    city_zip = []
    for i in range(0, zip_dem.shape[0]):
        search = SearchEngine(simple_zipcode=False)
        res = search.query(city=zip_dem['major_city'][i],
                           state=zip_dem['state'][i],
                           returns=100)
        for zipcode in res:
            city_zip.append(zipcode.zipcode)

    city_data = pd.DataFrame()
    for i in city_zip:
        zipcode = search.by_zipcode(i)
        table = json_normalize(json.loads(zipcode.to_json()))
        city_data = pd.concat([city_data, table], axis=0)
    city_data = city_data.reset_index(drop=True)

    city_data.dropna(inplace=True)
    city_data = city_data.replace({None: np.nan})
    city_data = city_data.reset_index(drop=True)
    return city_data