Esempio n. 1
0
def create_opt(parameters, config):
    if config.opt == "SGD":
        optimizer = optim.SGD(parameters, lr=config.lr, weight_decay=config.l2)
    elif config.opt == "Adam":
        optimizer = optim.Adam(parameters,
                               lr=config.lr,
                               weight_decay=config.l2)
    elif config.opt == "Adadelta":
        optimizer = optim.Adadelta(parameters,
                                   lr=config.lr,
                                   rho=config.rho,
                                   eps=config.eps,
                                   weight_decay=config.l2)
    elif config.opt == "Adagrad":
        optimizer = optim.Adagrad(parameters,
                                  lr=config.lr,
                                  weight_decay=config.l2)
    elif config.opt == "AdamW":
        print("Using AdamW")
        optimizer = AdamW(parameters, lr=config.lr, weight_decay=config.l2)
    return optimizer
            for k in model_t_loc.state_dict():
                if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
                    sd[k] = loaded_dict[k]
            loaded_dict = sd
            model_t_loc.load_state_dict(loaded_dict)
            # named_parameters()包含网络模块名称 key为模型模块名称 value为模型模块值,可以通过判断模块名称进行对应模块冻结
            for key, value in model_t_loc.named_parameters():
                value.requires_grad = False
            del loaded_dict
            del sd
            del checkpoint
        

    if args.mode != "onlyT":
        params = model_s.parameters()
        optimizer = AdamW(params, lr=args.lr, weight_decay=args.weight_decay)
        model_s, optimizer = amp.initialize(model_s, optimizer, opt_level="O0")
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[5, 11, 17, 23, 29, 33, 47, 50, 60, 70, 90, 110, 130, 150, 170, 180, 190], gamma=0.5)
    else:
        params = model_t.parameters()
        optimizer = AdamW(params, lr=args.lr, weight_decay=args.weight_decay)
        model_t, optimizer = amp.initialize(model_t, optimizer, opt_level="O0")
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[5, 11, 17, 23, 29, 33, 47, 50, 60, 70, 90, 110, 130, 150, 170, 180, 190], gamma=0.5)

    if args.transfer and args.mode !='onlyT':
        snap_to_load = 'res50_loc_{}_KD_best'.format(seed)
        print("=> loading checkpoint '{}'".format(snap_to_load))
        checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
        loaded_dict = checkpoint['state_dict']
        sd = model_s.state_dict()
        for k in model_s.state_dict():
Esempio n. 3
0
                                   batch_size=batch_size,
                                   num_workers=5,
                                   shuffle=True,
                                   pin_memory=False,
                                   drop_last=True)
    val_data_loader = DataLoader(val_train,
                                 batch_size=val_batch_size,
                                 num_workers=5,
                                 shuffle=False,
                                 pin_memory=False)

    model = SeResNext50_Unet_Loc().cuda()

    params = model.parameters()

    optimizer = AdamW(params, lr=0.00015, weight_decay=1e-6)

    model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=[
                                             15, 29, 43, 53, 65, 80, 90, 100,
                                             110, 130, 150, 170, 180, 190
                                         ],
                                         gamma=0.5)

    seg_loss = ComboLoss({'dice': 1.0, 'focal': 10.0}, per_image=False).cuda()

    best_score = 0
    _cnt = -1
    torch.cuda.empty_cache()