Esempio n. 1
0
def PackedListC(codec : Codec) -> Codec:
    enc, dec = listC(bytesC)

    def encode(f : FileOut, xs : PackedList) -> None:
        enc(f, xs.blocks)

    def decode(f : FileIn) -> PackedList:
        xs : PackedList = PackedList(codec)
        xs.blocks = dec(f)
        return xs

    return Codec(encode, decode)
Esempio n. 2
0
def test_complicated(xs):
    tupleC(listC(strC), intC, listC(tupleC(intC, strC))).test(xs)
Esempio n. 3
0
def test_list_str(xs):
    listC(strC).test(xs)
Esempio n. 4
0
def test_list_int(xs):
    listC(intC).test(xs)
Esempio n. 5
0
    tupleC, namedtupleC, setC, frozensetC
from util.codec_progress import CodecProgress, listCP, oneCP

log = logging.getLogger(__name__)

class Row(NamedTuple):
    tuple_size : int
    garp_menu_tuples : Set[FrozenSet[FrozenSet[int]]]  # set of tuples of menus (= alt sets)

RowC = namedtupleC(Row, intC, setC(frozensetC(frozensetC(intC))))

class Subject(NamedTuple):
    name : str
    rows : List[Row]

SubjectC = namedtupleC(Subject, strC, listC(RowC))

class MenuRowNode(util.tree_model.Node):
    def __init__(self, parent_node, row: int, alternatives : List[str], xs : FrozenSet[FrozenSet[int]]) -> None:
        util.tree_model.Node.__init__(
            self, parent_node, row,
            fields=(
                '',
                '',
                '{' + ','.join(
                    '{' + ','.join(alternatives[i] for i in sorted(menu)) + '}'
                    for menu in sorted(xs)
                ) + '}',
            ),
        )
Esempio n. 6
0
    def csv_alt(self, index: Optional[int]) -> Optional[str]:
        if index is None:
            return None
        else:
            return self.alternatives[index]

    def pack(self) -> PackedSubject:
        return PackedSubject(SubjectC.encode_to_memory(self))

    @staticmethod
    def unpack(packed: PackedSubject) -> 'Subject':
        return SubjectC.decode_from_memory(packed)


SubjectC = namedtupleC(Subject, strC, listC(strC), listC(ChoiceRowC))

DatasetHeaderC = tupleC(strC, listC(strC))


class Dataset:
    def __init__(self, name: str, alternatives: Sequence[str]) -> None:
        self.name = name
        self.alternatives = list(alternatives)

    def __str__(self):
        return self.label_name()

    def label_type(self):
        return self.__class__.__name__
Esempio n. 7
0
    garp : int
    sarp : int

ViolationsC = namedtupleC(Violations, intC, intC)

class Subject(NamedTuple):
    subject_name : str
    violations : List[Tuple[int, Violations]]  # cycle length, counts
    warp_strict : int
    warp_nonstrict : int
    hm_garp : BoundEstimate
    hm_sarp : BoundEstimate
    hm_warp_strict : BoundEstimate
    hm_warp_nonstrict : BoundEstimate

SubjectC = namedtupleC(Subject, strC, listC(tupleC(intC, ViolationsC)), intC, intC,
    BoundEstimateC, BoundEstimateC,
    BoundEstimateC, BoundEstimateC,
)

class ViolationsNode(util.tree_model.Node):
    def __init__(self, parent_node, row, len_viol : Tuple[int, Violations]) -> None:
        cycle_length, violations = len_viol
        util.tree_model.Node.__init__(
            self, parent_node, row,
            fields=(
                '',
                cycle_length,
                violations.garp,
                violations.sarp,
                '-',
Esempio n. 8
0
    sarp: int
    garp_binary_menus: int
    sarp_binary_menus: int


RowC = namedtupleC(Row, intC, intC, intC, intC, intC)


class SubjectRaw(NamedTuple):
    name: str
    rows: List[Row]
    warp_pairs: int
    warp_all: int


SubjectRawC = namedtupleC(SubjectRaw, strC, listC(RowC), intC, intC)


class Subject(NamedTuple):
    raw: SubjectRaw

    total_garp: int
    total_sarp: int
    total_garp_binary_menus: int
    total_sarp_binary_menus: int

    @staticmethod
    def from_raw(raw: SubjectRaw) -> 'Subject':
        return Subject(
            raw,
            total_garp=sum(r.garp for r in raw.rows),
Esempio n. 9
0

Issue = Union[RepeatedMenu, ChoiceNotInMenu, ]

IssueC = enumC('Issue', {
    RepeatedMenu: (setC(intC), ),
    ChoiceNotInMenu: (setC(intC), intC),
})


class Subject(NamedTuple):
    name: str
    issues: List[Issue]


SubjectC = namedtupleC(Subject, strC, listC(IssueC))


class IssueNode(util.tree_model.Node):
    def __init__(self, parent_node, row: int, alternatives: List[str],
                 issue: Issue) -> None:
        if isinstance(issue, RepeatedMenu):
            fields = (
                'repeated menu',
                ','.join(alternatives[i] for i in sorted(issue.menu)),
                '',
            )
        elif isinstance(issue, ChoiceNotInMenu):
            fields = (
                'choice not in menu',
                ','.join(alternatives[i] for i in sorted(issue.menu)),
Esempio n. 10
0
        if self.lower_bound != self.upper_bound:
            return f'{self.lower_bound-1} < N ≤ {self.upper_bound}'
        else:
            return self.upper_bound


PenaltyC = namedtupleC(Penalty, intC, intC)


class Request(NamedTuple):  # type: ignore
    subjects: List[dataset.PackedSubject]
    models: Sequence[model.Model]
    disable_parallelism: bool


RequestC = namedtupleC(Request, listC(dataset.PackedSubjectC), listC(ModelC),
                       boolC)

InstanceRepr = NewType('InstanceRepr', bytes)
InstanceReprC = bytesC


class InstanceInfo(NamedTuple):  # type: ignore
    model: ModelRepr
    penalty: Penalty
    instance: InstanceRepr


InstanceInfoC = namedtupleC(InstanceInfo, ModelC, PenaltyC, InstanceReprC)

Esempio n. 11
0
class Subject(NamedTuple):
    subject_name: str
    violations: List[Tuple[int, Violations]]  # cycle length, counts
    warp_strict: int
    warp_nonstrict: int
    hm_garp: BoundEstimate
    hm_sarp: BoundEstimate
    hm_warp_strict: BoundEstimate
    hm_warp_nonstrict: BoundEstimate


SubjectC = namedtupleC(
    Subject,
    strC,
    listC(tupleC(intC, ViolationsC)),
    intC,
    intC,
    BoundEstimateC,
    BoundEstimateC,
    BoundEstimateC,
    BoundEstimateC,
)


class ViolationsNode(util.tree_model.Node):
    def __init__(self, parent_node, row, len_viol: Tuple[int,
                                                         Violations]) -> None:
        cycle_length, violations = len_viol
        util.tree_model.Node.__init__(
            self,
Esempio n. 12
0
GenChoicesC = enumC('GenChoices', {
    Instance: (bytesC, ),
    Uniform: (boolC, boolC),
})


class Request(NamedTuple):
    name: str
    alternatives: List[str]
    gen_menus: GenMenus
    gen_choices: GenChoices
    preserve_deferrals: bool


RequestC = namedtupleC(Request, strC, listC(strC), GenMenusC, GenChoicesC,
                       boolC)


class Response(NamedTuple):
    subject_packed: PackedSubject
    observation_count: int


ResponseC = namedtupleC(Response, PackedSubjectC, intC)


def run(core: Core, request: Request) -> Response:
    return cast(
        Response,
        core.call('simulation', RequestC, ResponseC, request),