Esempio n. 1
0
    def _validate(self, machine, n=10):
        N = n * n

        z = np.random.uniform(-np.pi, np.pi, size=[n, self.arch['z_dim']])
        z = np.cos(z)
        z = np.concatenate([z] * n, axis=1)
        z = np.reshape(z, [N, -1]).astype(np.float32)  # consecutive rows
        # y = np.random.randint(1, arch['y_dim'], size=[N, 2])
        y = np.asarray(
            [
                [5, 0, 0],  # 5
                [9, 0, 0],  # 9
                [12, 0, 0],  # 2
                [17, 0, 0],  # 7
                [19, 0, 0],
                [161, 0, 0],
                [170, 0, 0],
                [170, 16, 0],
                [161, 9, 4],
                [19, 24, 50]
            ],
            dtype=np.int64)
        y = np.concatenate([y] * n, axis=0)

        Z = tf.constant(z)
        Y = tf.constant(y)
        Xh = machine.generate(Z, Y)  # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
Esempio n. 2
0
    def _validate(self, machine, n=10):
        N = n * n

        z = np.random.uniform(-np.pi, np.pi, size=[n, self.arch['z_dim']])
        z = np.cos(z)
        z = np.concatenate([z] * n, axis=1)
        z = np.reshape(z, [N, -1]).astype(np.float32)  # consecutive rows
        # y = np.random.randint(1, arch['y_dim'], size=[N, 2])
        y = np.asarray(
            [[5,   0,  0 ],  # 5
            [9,   0,  0 ],   # 9
            [12,  0,  0 ],   # 2
            [17,  0,  0 ],   # 7
            [19,  0,  0 ],
            [161, 0,  0 ],
            [170, 0,  0 ],
            [170, 16, 0 ],
            [161, 9,  4 ],
            [19,  24, 50]],
            dtype=np.int64)
        y = np.concatenate([y] * n, axis=0)

        Z = tf.constant(z)
        Y = tf.constant(y)
        Xh = machine.generate(Z, Y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
Esempio n. 3
0
    def _validate(self, machine, n=10):
        N = n * n
        
        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)       

        # same column same y 
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [-1,])
        y = tf.tile(y, [n,])

        Xh = machine.generate(z, y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
Esempio n. 4
0
    def _validate(self, machine, n=10):
        N = n * n

        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)

        # same column same y
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [
            -1,
        ])
        y = tf.tile(y, [
            n,
        ])

        Xh = machine.generate(z, y)  # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh