Esempio n. 1
0
def run_pix2pix(img, net, opt):
    if opt.netG == 'HD':
        img = impro.resize(img, 512)
    else:
        img = impro.resize(img, 128)
    img = data.im2tensor(img, use_gpu=opt.use_gpu)
    img_fake = net(img)
    img_fake = data.tensor2im(img_fake)
    return img_fake
Esempio n. 2
0
def cleanmosaic_video_fusion(opt,netG,netM):
    path = opt.media_path
    N = 25
    INPUT_SIZE = 128
    fps,imagepaths = video_init(opt,path)
    positions = []
    # get position
    for i,imagepath in enumerate(imagepaths,1):
        img_origin = impro.imread(os.path.join('./tmp/video2image',imagepath))
        # x,y,size = runmodel.get_mosaic_position(img_origin,net_mosaic_pos,opt)[:3]
        x,y,size,mask = runmodel.get_mosaic_position(img_origin,netM,opt)
        cv2.imwrite(os.path.join('./tmp/mosaic_mask',imagepath), mask)
        positions.append([x,y,size])
        print('\r','Find mosaic location:'+str(i)+'/'+str(len(imagepaths)),util.get_bar(100*i/len(imagepaths),num=40),end='')
    print('\nOptimize mosaic locations...')
    positions =np.array(positions)
    for i in range(3):positions[:,i] = filt.medfilt(positions[:,i],opt.medfilt_num)

    # clean mosaic
    for i,imagepath in enumerate(imagepaths,0):
        x,y,size = positions[i][0],positions[i][1],positions[i][2]
        img_origin = impro.imread(os.path.join('./tmp/video2image',imagepath))
        mask = cv2.imread(os.path.join('./tmp/mosaic_mask',imagepath),0)
        
        if size==0:
            cv2.imwrite(os.path.join('./tmp/replace_mosaic',imagepath),img_origin)
        else:
            mosaic_input = np.zeros((INPUT_SIZE,INPUT_SIZE,3*N+1), dtype='uint8')
            for j in range(0,N):
                img = impro.imread(os.path.join('./tmp/video2image',imagepaths[np.clip(i+j-12,0,len(imagepaths)-1)]))
                img = img[y-size:y+size,x-size:x+size]
                img = impro.resize(img,INPUT_SIZE)
                mosaic_input[:,:,j*3:(j+1)*3] = img
            mask = impro.resize(mask,np.min(img_origin.shape[:2]))
            mask = mask[y-size:y+size,x-size:x+size]
            mask = impro.resize(mask, INPUT_SIZE)
            mosaic_input[:,:,-1] = mask
            mosaic_input = data.im2tensor(mosaic_input,bgr2rgb=False,use_gpu=opt.use_gpu,use_transform = False,is0_1 = False)
            unmosaic_pred = netG(mosaic_input)
            
            #unmosaic_pred = (unmosaic_pred.cpu().detach().numpy()*255)[0]
            #img_fake = unmosaic_pred.transpose((1, 2, 0))
            img_fake = data.tensor2im(unmosaic_pred,rgb2bgr = False ,is0_1 = False)
            img_result = impro.replace_mosaic(img_origin,img_fake,x,y,size,opt.no_feather)
            cv2.imwrite(os.path.join('./tmp/replace_mosaic',imagepath),img_result)
        print('\r','Clean Mosaic:'+str(i+1)+'/'+str(len(imagepaths)),util.get_bar(100*i/len(imagepaths),num=40),end='')
    print()
    ffmpeg.image2video( fps,
                './tmp/replace_mosaic/output_%05d.'+opt.tempimage_type,
                './tmp/voice_tmp.mp3',
                 os.path.join(opt.result_dir,os.path.splitext(os.path.basename(path))[0]+'_clean.mp4'))        
Esempio n. 3
0
def loadimage(imagepaths,maskpaths,opt,test_flag = False):
    batchsize = len(imagepaths)
    images = np.zeros((batchsize,3,opt.finesize,opt.finesize), dtype=np.float32)
    masks = np.zeros((batchsize,1,opt.finesize,opt.finesize), dtype=np.float32)
    for i in range(len(imagepaths)):
        img = impro.resize(impro.imread(imagepaths[i]),opt.loadsize)
        mask = impro.resize(impro.imread(maskpaths[i],mod = 'gray'),opt.loadsize)      
        img,mask = data.random_transform_image(img, mask, opt.finesize, test_flag)
        images[i] = (img.transpose((2, 0, 1))/255.0)
        masks[i] = (mask.reshape(1,1,opt.finesize,opt.finesize)/255.0)
    images = Totensor(images,opt.use_gpu)
    masks = Totensor(masks,opt.use_gpu)

    return images,masks
Esempio n. 4
0
def run_unet_rectim(img, net, size=128, use_gpu=True):
    img = impro.resize(img, size)
    img1, img2 = impro.spiltimage(img)
    mask1 = run_unet(img1, net, size=128, use_gpu=use_gpu)
    mask2 = run_unet(img2, net, size=128, use_gpu=use_gpu)
    mask = impro.mergeimage(mask1, mask2, img)
    return mask
Esempio n. 5
0
def run_styletransfer(opt, net, img):

    if opt.output_size != 0:
        if 'resize' in opt.preprocess and 'resize_scale_width' not in opt.preprocess:
            img = impro.resize(img, opt.output_size)
        elif 'resize_scale_width' in opt.preprocess:
            img = cv2.resize(img, (opt.output_size, opt.output_size))
        img = img[0:4 * int(img.shape[0] / 4), 0:4 * int(img.shape[1] / 4), :]

    if 'edges' in opt.preprocess:
        if opt.canny > 100:
            canny_low = opt.canny - 50
            canny_high = np.clip(opt.canny + 50, 0, 255)
        elif opt.canny < 50:
            canny_low = np.clip(opt.canny - 25, 0, 255)
            canny_high = opt.canny + 25
        else:
            canny_low = opt.canny - int(opt.canny / 2)
            canny_high = opt.canny + int(opt.canny / 2)
        img = cv2.Canny(img, opt.canny - 50, opt.canny + 50)
        if opt.only_edges:
            return img
        img = data.im2tensor(img,
                             use_gpu=opt.use_gpu,
                             gray=True,
                             use_transform=False,
                             is0_1=False)
    else:
        img = data.im2tensor(img, use_gpu=opt.use_gpu)
    img = net(img)
    img = data.tensor2im(img)
    return img
Esempio n. 6
0
def handle():
    result = {}
    # to opencv img
    try:
        imgRec = request.form['img']
        imgByte = base64.b64decode(imgRec)
        img_np_arr = np.frombuffer(imgByte, np.uint8)
        img = cv2.imdecode(img_np_arr, cv2.IMREAD_COLOR)
    except Exception as e:
        result['img'] = imgRec
        result['info'] = 'readfailed'
        return result

    # run model
    try:
        if max(img.shape) > 1080:
            img = impro.resize(img, 720, interpolation=cv2.INTER_CUBIC)
        img = core.cleanmosaic_img_server(opt, img, netG, netM)
    except Exception as e:
        result['img'] = imgRec
        result['info'] = 'procfailed'
        return result

    # return
    imgbytes = cv2.imencode('.jpg', img)[1]
    imgString = base64.b64encode(imgbytes).decode('utf-8')
    result['img'] = imgString
    result['info'] = 'ok'
    return result
Esempio n. 7
0
def cleanmosaic_video_fusion(opt,netG,netM):
    path = opt.media_path
    N = 25
    if 'HD' in os.path.basename(opt.model_path):
        INPUT_SIZE = 256
    else:
        INPUT_SIZE = 128
    fps,imagepaths,height,width = video_init(opt,path)
    positions = get_mosaic_positions(opt,netM,imagepaths,savemask=True)
    
    # clean mosaic
    img_pool = np.zeros((height,width,3*N), dtype='uint8')
    for i,imagepath in enumerate(imagepaths,0):
        x,y,size = positions[i][0],positions[i][1],positions[i][2]
        
        # image read stream
        mask = cv2.imread(os.path.join('./tmp/mosaic_mask',imagepath),0)
        if i==0 :
            for j in range(0,N):
                img_pool[:,:,j*3:(j+1)*3] = impro.imread(os.path.join('./tmp/video2image',imagepaths[np.clip(i+j-12,0,len(imagepaths)-1)]))
        else:
            img_pool[:,:,0:(N-1)*3] = img_pool[:,:,3:N*3]
            img_pool[:,:,(N-1)*3:] = impro.imread(os.path.join('./tmp/video2image',imagepaths[np.clip(i+12,0,len(imagepaths)-1)]))
        img_origin = img_pool[:,:,int((N-1)/2)*3:(int((N-1)/2)+1)*3]
        
        if size==0: # can not find mosaic,
            cv2.imwrite(os.path.join('./tmp/replace_mosaic',imagepath),img_origin)
        else:

            mosaic_input = np.zeros((INPUT_SIZE,INPUT_SIZE,3*N+1), dtype='uint8')
            mosaic_input[:,:,0:N*3] = impro.resize(img_pool[y-size:y+size,x-size:x+size,:], INPUT_SIZE)
            mask_input = impro.resize(mask,np.min(img_origin.shape[:2]))[y-size:y+size,x-size:x+size]
            mosaic_input[:,:,-1] = impro.resize(mask_input, INPUT_SIZE)

            mosaic_input = data.im2tensor(mosaic_input,bgr2rgb=False,use_gpu=opt.use_gpu,use_transform = False,is0_1 = False)
            unmosaic_pred = netG(mosaic_input)
            img_fake = data.tensor2im(unmosaic_pred,rgb2bgr = False ,is0_1 = False)
            img_result = impro.replace_mosaic(img_origin,img_fake,mask,x,y,size,opt.no_feather)
            cv2.imwrite(os.path.join('./tmp/replace_mosaic',imagepath),img_result)
        print('\r','Clean Mosaic:'+str(i+1)+'/'+str(len(imagepaths)),util.get_bar(100*i/len(imagepaths),num=35),end='')
    print()
    ffmpeg.image2video( fps,
                './tmp/replace_mosaic/output_%05d.'+opt.tempimage_type,
                './tmp/voice_tmp.mp3',
                 os.path.join(opt.result_dir,os.path.splitext(os.path.basename(path))[0]+'_clean.mp4'))        
Esempio n. 8
0
def run_segment(img, net, size=360, use_gpu=0):
    img = impro.resize(img, size)
    img = data.im2tensor(img,
                         use_gpu=use_gpu,
                         bgr2rgb=False,
                         use_transform=False,
                         is0_1=True)
    mask = net(img)
    mask = data.tensor2im(mask, gray=True, rgb2bgr=False, is0_1=True)
    return mask
def gen_base64():
    if 'image' not in request.json:
        return error('Stupid request'), 412

    if 'base64' in request.args:
        use_base64 = True if request.args.get('base64') == 'true' else False
    else:
        use_base64 = False

    image_data = str.encode(request.json['image'])
    image_data = image_data[23:]

    ip = request.environ.get('HTTP_X_REAL_IP', request.remote_addr)
    timestamp = datetime.datetime.now().isoformat()
    image_name = ip + '_' + timestamp + '.png'

    image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name)

    with open(image_path, "wb") as f:
        f.write(base64.decodebytes(image_data))

    image = cv2.imread(image_path)
    image = resize(image, 256, 256)
    cv2.imwrite(image_path, image)

    ## Load image and begin generating
    real = Image.open(image_path)
    preprocess = transforms.Compose([
        transforms.Scale(opt.loadSize),
        transforms.RandomCrop(opt.fineSize),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    # Load input
    input_A = preprocess(real).unsqueeze_(0)
    model.input_A.resize_(input_A.size()).copy_(input_A)
    # Forward (model.real_A) through G and produce output (model.fake_B)
    model.test()

    # Convert image to numpy array
    fake = util.tensor2im(model.fake_B.data)
    output_path = os.path.join(app.config['GAN_FOLDER'], image_name)
    # Save image
    util.save_image(fake, output_path)

    # if not use_base64:
    #    return send_file(output_path)

    # image = open(output_path, 'rb').read()
    # encoded = 'data:image/jpeg;base64,' + base64.b64encode(image).decode('utf-8')

    # return encoded
    return '/cgan/' + image_name
Esempio n. 10
0
def loaddata():
    video_index = random.randint(0,len(videos)-1)
    video = videos[video_index]
    img_index = random.randint(int(N/2)+1,lengths[video_index]- int(N/2)-1)
    input_img = np.zeros((opt.loadsize,opt.loadsize,3*N+1), dtype='uint8')
    for i in range(0,N):
    
        img = cv2.imread('./dataset/'+video+'/mosaic/output_'+'%05d'%(img_index+i-int(N/2))+'.png')
        img = impro.resize(img,opt.loadsize)
        input_img[:,:,i*3:(i+1)*3] = img
    mask = cv2.imread('./dataset/'+video+'/mask/output_'+'%05d'%(img_index)+'.png',0)
    mask = impro.resize(mask,opt.loadsize)
    mask = impro.mask_threshold(mask,15,128)
    input_img[:,:,-1] = mask

    ground_true = cv2.imread('./dataset/'+video+'/ori/output_'+'%05d'%(img_index)+'.png')
    ground_true = impro.resize(ground_true,opt.loadsize)

    input_img,ground_true = data.random_transform_video(input_img,ground_true,opt.finesize,N)
    input_img = data.im2tensor(input_img,bgr2rgb=False,use_gpu=opt.use_gpu,use_transform = False,is0_1=False)
    ground_true = data.im2tensor(ground_true,bgr2rgb=False,use_gpu=opt.use_gpu,use_transform = False,is0_1=False)
    
    return input_img,ground_true
Esempio n. 11
0
def replace_mosaic(img_origin,img_fake,x,y,size,no_father = opt.no_feather):
    img_fake = impro.resize(img_fake,size*2)

    if no_father:
        img_origin[y-size:y+size,x-size:x+size]=img_fake
        img_result = img_origin
    else:
        eclosion_num = int(size/5)
        entad = int(eclosion_num/2+2)
        mask = np.zeros(img_origin.shape, dtype='uint8')
        mask = cv2.rectangle(mask,(x-size+entad,y-size+entad),(x+size-entad,y+size-entad),(255,255,255),-1)
        mask = (cv2.blur(mask, (eclosion_num, eclosion_num)))
        mask = mask/255.0

        img_tmp = np.zeros(img_origin.shape)
        img_tmp[y-size:y+size,x-size:x+size]=img_fake
        img_result = img_origin.copy()
        img_result = (img_origin*(1-mask)+img_tmp*mask).astype('uint8')
    return img_result
Esempio n. 12
0
def cleanmosaic_video_fusion(opt, netG, netM):
    path = opt.media_path
    N = 25
    if 'HD' in os.path.basename(opt.model_path):
        INPUT_SIZE = 256
    else:
        INPUT_SIZE = 128
    fps, imagepaths, height, width = video_init(opt, path)
    positions = get_mosaic_positions(opt, netM, imagepaths, savemask=True)
    t1 = time.time()
    if not opt.no_preview:
        cv2.namedWindow('clean', cv2.WINDOW_NORMAL)

    # clean mosaic
    print('Clean Mosaic:')
    length = len(imagepaths)
    img_pool = np.zeros((height, width, 3 * N), dtype='uint8')
    mosaic_input = np.zeros((INPUT_SIZE, INPUT_SIZE, 3 * N + 1), dtype='uint8')
    for i, imagepath in enumerate(imagepaths, 0):
        x, y, size = positions[i][0], positions[i][1], positions[i][2]

        # image read stream
        mask = cv2.imread(
            os.path.join(opt.temp_dir + '/mosaic_mask', imagepath), 0)
        if i == 0:
            for j in range(0, N):
                img_pool[:, :, j * 3:(j + 1) * 3] = impro.imread(
                    os.path.join(
                        opt.temp_dir + '/video2image',
                        imagepaths[np.clip(i + j - 12, 0,
                                           len(imagepaths) - 1)]))
        else:
            img_pool[:, :, 0:(N - 1) * 3] = img_pool[:, :, 3:N * 3]
            img_pool[:, :, (N - 1) * 3:] = impro.imread(
                os.path.join(
                    opt.temp_dir + '/video2image',
                    imagepaths[np.clip(i + 12, 0,
                                       len(imagepaths) - 1)]))
        img_origin = img_pool[:, :,
                              int((N - 1) / 2) * 3:(int((N - 1) / 2) + 1) * 3]
        img_result = img_origin.copy()

        if size > 100:
            try:  #Avoid unknown errors
                #reshape to network input shape

                mosaic_input[:, :, 0:N * 3] = impro.resize(
                    img_pool[y - size:y + size, x - size:x + size, :],
                    INPUT_SIZE)
                mask_input = impro.resize(mask, np.min(
                    img_origin.shape[:2]))[y - size:y + size,
                                           x - size:x + size]
                mosaic_input[:, :, -1] = impro.resize(mask_input, INPUT_SIZE)

                mosaic_input_tensor = data.im2tensor(mosaic_input,
                                                     bgr2rgb=False,
                                                     use_gpu=opt.use_gpu,
                                                     use_transform=False,
                                                     is0_1=False)
                unmosaic_pred = netG(mosaic_input_tensor)
                img_fake = data.tensor2im(unmosaic_pred,
                                          rgb2bgr=False,
                                          is0_1=False)
                img_result = impro.replace_mosaic(img_origin, img_fake, mask,
                                                  x, y, size, opt.no_feather)
            except Exception as e:
                print('Warning:', e)
        cv2.imwrite(os.path.join(opt.temp_dir + '/replace_mosaic', imagepath),
                    img_result)

        #preview result and print
        if not opt.no_preview:
            cv2.imshow('clean', img_result)
            cv2.waitKey(1) & 0xFF
        t2 = time.time()
        print('\r',
              str(i + 1) + '/' + str(length),
              util.get_bar(100 * i / length, num=35),
              util.counttime(t1, t2, i + 1, len(imagepaths)),
              end='')
    print()
    if not opt.no_preview:
        cv2.destroyAllWindows()
    ffmpeg.image2video(
        fps,
        opt.temp_dir + '/replace_mosaic/output_%06d.' + opt.tempimage_type,
        opt.temp_dir + '/voice_tmp.mp3',
        os.path.join(
            opt.result_dir,
            os.path.splitext(os.path.basename(path))[0] + '_clean.mp4'))
Esempio n. 13
0
                x, y, size, area = impro.boundingSquare(mask, Ex_mul=ex_mul)
                positions.append([x, y, size])
            positions = np.array(positions)
            for i in range(3):
                positions[:, i] = filt.medfilt(positions[:, i],
                                               opt.medfilt_num)

            for i, imagepath in enumerate(imagepaths):
                x, y, size = positions[i][0], positions[i][1], positions[i][2]
                tmp_cnt = i
                while size < opt.minsize // 2:
                    tmp_cnt = tmp_cnt - 1
                    x, y, size = positions[tmp_cnt][0], positions[tmp_cnt][
                        1], positions[tmp_cnt][2]
                img = impro.resize(imgs[i][y - size:y + size,
                                           x - size:x + size],
                                   opt.outsize,
                                   interpolation=cv2.INTER_CUBIC)
                mask = impro.resize(masks[i][y - size:y + size,
                                             x - size:x + size],
                                    opt.outsize,
                                    interpolation=cv2.INTER_CUBIC)
                impro.imwrite(
                    os.path.join(origindir, '%05d' % (i + 1) + '.jpg'), img)
                impro.imwrite(os.path.join(maskdir, '%05d' % (i + 1) + '.png'),
                              mask)
                # x_tmp,y_tmp,size_tmp

            # for imagepath in imagepaths:
            #     img = impro.imread(imagepath)
            #     mask,x,y,halfsize,area = runmodel.get_ROI_position(img,net,opt,keepsize=True)
            #     if halfsize>opt.minsize//4:
Esempio n. 14
0
        #test
        if os.path.isdir('./test'):  
            netG.eval()
            
            test_names = os.listdir('./test')
            test_names.sort()
            result = np.zeros((opt.finesize*2,opt.finesize*len(test_names),3), dtype='uint8')

            for cnt,test_name in enumerate(test_names,0):
                img_names = os.listdir(os.path.join('./test',test_name,'image'))
                img_names.sort()
                inputdata = np.zeros((opt.finesize,opt.finesize,3*N+1), dtype='uint8')
                for i in range(0,N):
                    img = impro.imread(os.path.join('./test',test_name,'image',img_names[i]))
                    img = impro.resize(img,opt.finesize)
                    inputdata[:,:,i*3:(i+1)*3] = img

                mask = impro.imread(os.path.join('./test',test_name,'mask.png'),'gray')
                mask = impro.resize(mask,opt.finesize)
                mask = impro.mask_threshold(mask,15,128)
                inputdata[:,:,-1] = mask
                result[0:opt.finesize,opt.finesize*cnt:opt.finesize*(cnt+1),:] = inputdata[:,:,int((N-1)/2)*3:(int((N-1)/2)+1)*3]
                inputdata = data.im2tensor(inputdata,bgr2rgb=False,use_gpu=opt.use_gpu,use_transform = False,is0_1 = False)
                pred = netG(inputdata)
     
                pred = data.tensor2im(pred,rgb2bgr = False, is0_1 = False)
                result[opt.finesize:opt.finesize*2,opt.finesize*cnt:opt.finesize*(cnt+1),:] = pred

            cv2.imwrite(os.path.join(dir_checkpoint,str(iter+1)+'_test.jpg'), result)
            netG.train()
Esempio n. 15
0
cnt = 0
for file in filepaths:
    try:
        cnt += 1
        img = impro.imread(file, loadsize=512)
        img_drawn = img.copy()
        cv2.namedWindow('image')
        cv2.setMouseCallback('image', draw_circle)  #MouseCallback
        while (1):

            cv2.imshow('image', img_drawn)
            k = cv2.waitKey(1) & 0xFF
            if k == ord('s'):

                img_drawn = impro.resize(img_drawn, 256)
                mask = makemask(img_drawn)
                cv2.imwrite(
                    os.path.join(
                        mask_savedir,
                        os.path.splitext(os.path.basename(file))[0] + '.png'),
                    mask)
                cv2.imwrite(os.path.join(img_savedir, os.path.basename(file)),
                            img)
                print(
                    'Saved:',
                    os.path.join(
                        mask_savedir,
                        os.path.splitext(os.path.basename(file))[0] + '.png'),
                    mask)
                # cv2.destroyAllWindows()
Esempio n. 16
0
import numpy as np
import cv2
import os
import sys

sys.path.append("..")
from util import image_processing as impro
from util import util

img_dir = './datasets_img/pix2pix/edges2cat/images'
output_dir = './datasets_img/pix2pix/edges2cat/train'
util.makedirs(output_dir)

img_names = os.listdir(img_dir)
for i, img_name in enumerate(img_names, 2000):
    try:
        img = impro.imread(os.path.join(img_dir, img_name))
        img = impro.resize(img, 286)
        h, w = img.shape[:2]
        edges = cv2.Canny(img, 150, 250)
        edges = impro.ch_one2three(edges)
        out_img = np.zeros((h, w * 2, 3), dtype=np.uint8)
        out_img[:, 0:w] = edges
        out_img[:, w:2 * w] = img
        cv2.imwrite(os.path.join(output_dir, '%05d' % i + '.jpg'), out_img)
    except Exception as e:
        pass
Esempio n. 17
0
def cleanmosaic_video_fusion(opt, netG, netM):
    path = opt.media_path
    N, T, S = 2, 5, 3
    LEFT_FRAME = (N * S)
    POOL_NUM = LEFT_FRAME * 2 + 1
    INPUT_SIZE = 256
    FRAME_POS = np.linspace(0, (T - 1) * S, T, dtype=np.int64)
    img_pool = []
    previous_frame = None
    init_flag = True

    fps, imagepaths, height, width = video_init(opt, path)
    positions = get_mosaic_positions(opt, netM, imagepaths, savemask=True)
    t1 = time.time()
    if not opt.no_preview:
        cv2.namedWindow('clean', cv2.WINDOW_NORMAL)

    # clean mosaic
    print('Step:3/4 -- Clean Mosaic:')
    length = len(imagepaths)

    for i, imagepath in enumerate(imagepaths, 0):
        x, y, size = positions[i][0], positions[i][1], positions[i][2]
        input_stream = []
        # image read stream
        if i == 0:  # init
            for j in range(POOL_NUM):
                img_pool.append(
                    impro.imread(
                        os.path.join(
                            opt.temp_dir + '/video2image',
                            imagepaths[np.clip(i + j - LEFT_FRAME, 0,
                                               len(imagepaths) - 1)])))
        else:  # load next frame
            img_pool.pop(0)
            img_pool.append(
                impro.imread(
                    os.path.join(
                        opt.temp_dir + '/video2image',
                        imagepaths[np.clip(i + LEFT_FRAME, 0,
                                           len(imagepaths) - 1)])))
        img_origin = img_pool[LEFT_FRAME]
        img_result = img_origin.copy()

        if size > 50:
            try:  #Avoid unknown errors
                for pos in FRAME_POS:
                    input_stream.append(
                        impro.resize(
                            img_pool[pos][y - size:y + size,
                                          x - size:x + size],
                            INPUT_SIZE)[:, :, ::-1])
                if init_flag:
                    init_flag = False
                    previous_frame = input_stream[N]
                    previous_frame = data.im2tensor(previous_frame,
                                                    bgr2rgb=True,
                                                    gpu_id=opt.gpu_id)

                input_stream = np.array(input_stream).reshape(
                    1, T, INPUT_SIZE, INPUT_SIZE, 3).transpose((0, 4, 1, 2, 3))
                input_stream = data.to_tensor(data.normalize(input_stream),
                                              gpu_id=opt.gpu_id)
                with torch.no_grad():
                    unmosaic_pred = netG(input_stream, previous_frame)
                img_fake = data.tensor2im(unmosaic_pred, rgb2bgr=True)
                previous_frame = unmosaic_pred
                # previous_frame = data.tensor2im(unmosaic_pred,rgb2bgr = True)
                mask = cv2.imread(
                    os.path.join(opt.temp_dir + '/mosaic_mask', imagepath), 0)
                img_result = impro.replace_mosaic(img_origin, img_fake, mask,
                                                  x, y, size, opt.no_feather)
            except Exception as e:
                init_flag = True
                print('Error:', e)
        else:
            init_flag = True
        cv2.imwrite(os.path.join(opt.temp_dir + '/replace_mosaic', imagepath),
                    img_result)
        os.remove(os.path.join(opt.temp_dir + '/video2image', imagepath))

        #preview result and print
        if not opt.no_preview:
            cv2.imshow('clean', img_result)
            cv2.waitKey(1) & 0xFF
        t2 = time.time()
        print('\r',
              str(i + 1) + '/' + str(length),
              util.get_bar(100 * i / length, num=35),
              util.counttime(t1, t2, i + 1, len(imagepaths)),
              end='')
    print()
    if not opt.no_preview:
        cv2.destroyAllWindows()
    print('Step:4/4 -- Convert images to video')
    ffmpeg.image2video(
        fps,
        opt.temp_dir + '/replace_mosaic/output_%06d.' + opt.tempimage_type,
        opt.temp_dir + '/voice_tmp.mp3',
        os.path.join(
            opt.result_dir,
            os.path.splitext(os.path.basename(path))[0] + '_clean.mp4'))
def gen_photo_nhat():
    if 'file' not in request.files:
        return error('file form-data not existed'), 412

    if 'base64' in request.args:
        use_base64 = True if request.args.get('base64') == 'true' else False
    else:
        use_base64 = False

    image = request.files['file']

    # Submit taylor.jpg ---> taylor_1234567.jpg (name + timestamp)
    image_name, ext = image.filename.rsplit('.', 1)
    image_name = image_name + '_' + str(int(time.time())) + '.' + ext
    # Save image to /upload
    image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name)
    image.save(image_path)

    ## Crop here
    found_face, position = get_face_position(image_path)
    if not found_face:
        return 'No face found', 404

    top = position['top']
    bottom = position['bottom']
    left = position['left']
    right = position['right']

    img = cv2.imread(image_path)
    img = img[top:bottom, left:right]
    img = resize(img, 256, 256)

    cv2.imwrite(image_path, img)

    ## Load image and begin generating
    real = Image.open(image_path)
    preprocess = transforms.Compose([
        transforms.Scale(opt.loadSize),
        transforms.RandomCrop(opt.fineSize),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    # Load input
    input_A = preprocess(real).unsqueeze_(0)
    model.input_A.resize_(input_A.size()).copy_(input_A)
    # Forward (model.real_A) through G and produce output (model.fake_B)
    model.test()

    # Convert image to numpy array
    fake = util.tensor2im(model.fake_B.data)
    output_path = os.path.join(app.config['GAN_FOLDER'], image_name)
    # Save image
    util.save_image(fake, output_path)

    if not use_base64:
        return send_file(output_path)

    image = open(output_path, 'rb').read()
    encoded = 'data:image/jpeg;base64,' + base64.b64encode(image).decode(
        'utf-8')

    return encoded
Esempio n. 19
0
def cleanmosaic_video_fusion(opt):
    net = loadmodel.pix2pix(opt)
    net_mosaic_pos = loadmodel.unet_clean(opt)
    path = opt.media_path
    N = 25

    util.clean_tempfiles()
    fps = ffmpeg.get_video_infos(path)[0]
    ffmpeg.video2voice(path, './tmp/voice_tmp.mp3')
    ffmpeg.video2image(path,
                       './tmp/video2image/output_%05d.' + opt.tempimage_type)
    positions = []
    imagepaths = os.listdir('./tmp/video2image')
    imagepaths.sort()

    # get position
    for imagepath in imagepaths:
        img_origin = impro.imread(os.path.join('./tmp/video2image', imagepath))
        # x,y,size = runmodel.get_mosaic_position(img_origin,net_mosaic_pos,opt)[:3]
        x, y, size, mask = runmodel.get_mosaic_position(
            img_origin, net_mosaic_pos, opt)
        cv2.imwrite(os.path.join('./tmp/mosaic_mask', imagepath), mask)
        positions.append([x, y, size])
        print('Find mosaic location:', imagepath)
    print('Optimize mosaic locations...')
    positions = np.array(positions)
    for i in range(3):
        positions[:, i] = filt.medfilt(positions[:, i], opt.medfilt_num)

    # clean mosaic
    print('Clean mosaic...')
    for i, imagepath in enumerate(imagepaths, 0):
        print('Clean mosaic:', imagepath)
        x, y, size = positions[i][0], positions[i][1], positions[i][2]
        img_origin = impro.imread(os.path.join('./tmp/video2image', imagepath))
        mask = cv2.imread(os.path.join('./tmp/mosaic_mask', imagepath), 0)

        if size == 0:
            cv2.imwrite(os.path.join('./tmp/replace_mosaic', imagepath),
                        img_origin)
        else:
            mosaic_input = np.zeros((256, 256, 3 * N + 1), dtype='uint8')
            for j in range(0, N):
                img = impro.imread(
                    os.path.join(
                        './tmp/video2image',
                        imagepaths[np.clip(i + j - 12, 0,
                                           len(imagepaths) - 1)]))
                img = img[y - size:y + size, x - size:x + size]
                img = impro.resize(img, 256)
                mosaic_input[:, :, j * 3:(j + 1) * 3] = img
            mask = impro.resize(mask, np.min(img_origin.shape[:2]))
            mask = mask[y - size:y + size, x - size:x + size]
            mask = impro.resize(mask, 256)
            mosaic_input[:, :, -1] = mask
            mosaic_input = data.im2tensor(mosaic_input,
                                          bgr2rgb=False,
                                          use_gpu=opt.use_gpu,
                                          use_transform=False)
            unmosaic_pred = net(mosaic_input)

            unmosaic_pred = (unmosaic_pred.cpu().detach().numpy() * 255)[0]
            img_fake = unmosaic_pred.transpose((1, 2, 0))
            img_result = impro.replace_mosaic(img_origin, img_fake, x, y, size,
                                              opt.no_feather)
            cv2.imwrite(os.path.join('./tmp/replace_mosaic', imagepath),
                        img_result)

    ffmpeg.image2video(
        fps, './tmp/replace_mosaic/output_%05d.' + opt.tempimage_type,
        './tmp/voice_tmp.mp3',
        os.path.join(
            opt.result_dir,
            os.path.splitext(os.path.basename(path))[0] + '_clean.mp4'))
Esempio n. 20
0
def run_pix2pix(img, net, size=128, use_gpu=True):
    img = impro.resize(img, size)
    img = data.im2tensor(img, use_gpu=use_gpu)
    img_fake = net(img)
    img_fake = data.tensor2im(img_fake)
    return img_fake
Esempio n. 21
0
def run_segment(img, net, size=360, gpu_id='-1'):
    img = impro.resize(img, size)
    img = data.im2tensor(img, gpu_id=gpu_id, bgr2rgb=False, is0_1=True)
    mask = net(img)
    mask = data.tensor2im(mask, gray=True, is0_1=True)
    return mask
Esempio n. 22
0
img_names = os.listdir(img_dir)
mask_names.sort()
img_names.sort()
print('Find images:', len(img_names))

cnt = 0
for fold in range(FOLD_NUM):
    for img_name, mask_name in zip(img_names, mask_names):
        try:
            img = impro.imread(os.path.join(img_dir, img_name))
            mask = impro.imread(os.path.join(mask_dir, mask_name), 'gray')
            mask = impro.resize_like(mask, img)
            x, y, size, area = impro.boundingSquare(mask, 1.5)
            if area > 100:
                if Bounding:
                    img = impro.resize(
                        img[y - size:y + size, x - size:x + size], OUT_SIZE)
                    mask = impro.resize(
                        mask[y - size:y + size, x - size:x + size], OUT_SIZE)
                img_mosaic = mosaic.addmosaic_random(img, mask)

                if HD:
                    cv2.imwrite(
                        os.path.join(train_A_path, '%05d' % cnt + '.jpg'),
                        img_mosaic)
                    cv2.imwrite(
                        os.path.join(train_B_path, '%05d' % cnt + '.jpg'), img)
                else:
                    merge_img = impro.makedataset(img_mosaic, img)
                    cv2.imwrite(
                        os.path.join(train_path, '%05d' % cnt + '.jpg'),
                        merge_img)
Esempio n. 23
0
        netG.eval()

        test_names = os.listdir('./test')
        test_names.sort()
        result = np.zeros((finesize * 2, finesize * len(test_names), 3),
                          dtype='uint8')

        for cnt, test_name in enumerate(test_names, 0):
            img_names = os.listdir(os.path.join('./test', test_name, 'image'))
            img_names.sort()
            inputdata = np.zeros((finesize, finesize, 3 * N + 1),
                                 dtype='uint8')
            for i in range(0, N):
                img = impro.imread(
                    os.path.join('./test', test_name, 'image', img_names[i]))
                img = impro.resize(img, finesize)
                inputdata[:, :, i * 3:(i + 1) * 3] = img

            mask = impro.imread(os.path.join('./test', test_name, 'mask.png'),
                                'gray')
            mask = impro.resize(mask, finesize)
            mask = impro.mask_threshold(mask, 15, 128)
            inputdata[:, :, -1] = mask
            result[0:finesize, finesize * cnt:finesize *
                   (cnt + 1), :] = inputdata[:, :,
                                             int((N - 1) / 2) *
                                             3:(int((N - 1) / 2) + 1) * 3]
            inputdata = data.im2tensor(inputdata,
                                       bgr2rgb=False,
                                       use_gpu=opt.use_gpu,
                                       use_transform=False,
net = loadmodel.unet(opt)
for path in videos:

    path = os.path.join('./video', path)
    util.clean_tempfiles()
    ffmpeg.video2voice(path, './tmp/voice_tmp.mp3')
    ffmpeg.video2image(path,
                       './tmp/video2image/output_%05d.' + opt.tempimage_type)
    imagepaths = os.listdir('./tmp/video2image')
    imagepaths.sort()

    # get position
    positions = []
    img_ori_example = impro.imread(
        os.path.join('./tmp/video2image', imagepaths[0]))
    mask_avg = np.zeros((impro.resize(img_ori_example, 128)).shape[:2])
    for imagepath in imagepaths:
        imagepath = os.path.join('./tmp/video2image', imagepath)
        print('Find ROI location:', imagepath)
        img = impro.imread(imagepath)
        x, y, size, mask = runmodel.get_mosaic_position(img,
                                                        net,
                                                        opt,
                                                        threshold=64)
        cv2.imwrite(
            os.path.join('./tmp/ROI_mask', os.path.basename(imagepath)), mask)
        positions.append([x, y, size])
        mask_avg = mask_avg + mask
    print('Optimize ROI locations...')
    mask_index = filt.position_medfilt(np.array(positions), 13)
Esempio n. 25
0
for i in range(len(masks)):
    masks[i] = masks[i].replace('.png', '.jpg')
for file in files:
    if file in masks:
        files_new.remove(file)
files = files_new
# files = list(set(files)) #Distinct
print('remain:', len(files))
random.shuffle(files)
# files.sort()
cnt = 0

for file in files:
    cnt += 1
    img = cv2.imread(os.path.join(image_dir, file))
    img = impro.resize(img, 512)
    cv2.namedWindow('image')
    cv2.setMouseCallback('image', draw_circle)  #MouseCallback
    while (1):

        cv2.imshow('image', img)
        k = cv2.waitKey(1) & 0xFF
        if k == ord(' '):
            img = impro.resize(img, 256)
            mask = makemask(img)
            cv2.imwrite(
                os.path.join(mask_dir,
                             os.path.splitext(file)[0] + '.png'), mask)
            print(os.path.join(mask_dir, os.path.splitext(file)[0] + '.png'))
            # cv2.destroyAllWindows()
            print('remain:', len(files) - cnt)