Esempio n. 1
0
    def __init__(self,
                 data_path,
                 label_path,
                 input_shape,
                 mode='image-level',
                 split=None,
                 train=None,
                 len_epoch=1000,
                 preprocess='z',
                 transform=None,
                 target_transform=None,
                 dtypes=('uint8', 'uint8')):

        self.data_path = data_path
        self.label_path = label_path
        self.input_shape = input_shape
        self.mode = mode
        self.len_epoch = len_epoch
        self.transform = transform
        self.target_transform = target_transform

        self.data = read_tif(data_path, dtype=dtypes[0])
        self.labels = read_tif(label_path, dtype=dtypes[1])

        mu, std = self.get_stats()
        self.mu = mu
        self.std = std
        self.preprocess = preprocess
        if preprocess == 'z':
            self.data = normalize(self.data, mu, std)
        elif preprocess == 'unit':
            self.data = normalize(self.data, 0, 255)
        self.labels = normalize(self.labels, 0, 255)

        if split is not None:
            if train:
                s = int(split * self.data.shape[2])
                self.data = self.data[:, :, :s]
                self.labels = self.labels[:, :, :s]
            else:
                s = int(split * self.data.shape[2])
                self.data = self.data[:, :, s:]
                self.labels = self.labels[:, :, s:]
Esempio n. 2
0
    def __init__(self, data_path, label_path, input_shape, len_epoch=1000, preprocess='z', transform=None, target_transform=None, dtypes=('uint8','uint8')):

        self.data_path = data_path
        self.label_path = label_path
        self.input_shape = input_shape
        self.len_epoch = len_epoch
        self.transform = transform
        self.target_transform = target_transform

        self.data = read_tif(data_path, dtype=dtypes[0])
        self.labels = read_tif(label_path, dtype=dtypes[1])

        mu, std = self.get_stats()
        self.mu = mu
        self.std = std
        self.preprocess = preprocess
        if preprocess == 'z':
            self.data = normalize(self.data, mu, std)
        elif preprocess == 'unit':
            self.data = normalize(self.data, 0, 255)
        self.labels = normalize(self.labels, 0, 255)
Esempio n. 3
0
    def __init__(self, data_path, input_shapes, len_epoch=1000, preprocess='z', transform=None, dtype='uint8'):

        self.data_path = data_path
        self.input_shapes = input_shapes
        self.len_epoch = len_epoch
        self.transform = transform

        self.data = read_tif(data_path, dtype=dtype)

        mu, std = self.get_stats()
        self.mu = mu
        self.std = std
        self.preprocess = preprocess
        if preprocess == 'z':
            self.data = normalize(self.data, mu, std)
        elif preprocess == 'unit':
            self.data = normalize(self.data, 0, 255)
    default=0)

args = parser.parse_args()
args.input_size = [int(item) for item in args.input_size.split(',')]
"""
    Setup writing directory
"""
print('[%s] Setting up write directories' % (datetime.datetime.now()))
if args.write_dir is not None:
    if not os.path.exists(args.write_dir):
        os.mkdir(args.write_dir)
"""
    Load and normalize the data
"""
print('[%s] Loading and normalizing the data' % (datetime.datetime.now()))
test_data = read_tif(args.data, dtype='uint8')
mu = np.mean(test_data)
std = np.std(test_data)
test_data = normalize(test_data, mu, std)
if len(test_data.shape) < 3:
    test_data = test_data[np.newaxis, ...]
"""
    Load the network
"""
print('[%s] Loading network' % (datetime.datetime.now()))
net = load_net(args.net)
"""
    Segmentation
"""
print('[%s] Starting segmentation' % (datetime.datetime.now()))
segmentation = segment_pixels(test_data,