Esempio n. 1
0
def main(_):

    loader = Loader(flag="azenuz_small")
    config = Config(loader, flag="azenuz_small")
    config.gpu = 0
    if platform.system() == 'Linux':
        gpuid = config.gpu
        os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(gpuid)
        device = '/gpu:' + str(gpuid)
    else:
        device = '/cpu:0'

    i = 0
    graph = tf.Graph()
    with graph.as_default():
        trainm = CTR_ggnn(config, device, loader, "Train")
        testm = CTR_ggnn(config, device, loader, "Valid")

    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)
    session_config.gpu_options.allow_growth = True

    with tf.Session(graph=graph, config=session_config) as session:
        # session.run(tf.global_variables_initializer())
        CTR_GNN_loader(session, config)
        best_auc = 0.
        best_epoch = 0
        auc = 0.
        for epoch in range(config.epoch_num):
            # cost, auc = run(session, config, trainm, loader, verbose=True)
            # INFO_LOG("Epoch %d Train AUC %.3f" % (epoch + 1, auc))
            # INFO_LOG("Epoch %d Train costs %.3f" %
            #          (epoch, cost))
            session.run(tf.local_variables_initializer())

            cost, auc = run(session, config, testm, loader, verbose=True)
            INFO_LOG("Epoch %d Valid AUC %.3f" % (epoch, auc))
            INFO_LOG("Epoch %d Valid cost %.3f" % (epoch, cost))
            # #
            if best_auc < auc:
                best_auc = auc
                best_epoch = epoch
                # CTR_GNN_saver(session, config, best_auc, best_epoch)

            INFO_LOG("*** best AUC now is %.3f in %d epoch" %
                     (best_auc, best_epoch))
Esempio n. 2
0
def main(_):

    loader = Loader(flag="azenuz_small")
    config = Config(loader, flag="azenuz_small")
    config.gpu = 1
    if platform.system() == 'Linux':
        gpuid = config.gpu
        os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(gpuid)
        device = '/gpu:' + str(gpuid)
    else:
        device = '/cpu:0'

    lr_updater = LearningRateUpdater(config.learning_rate, config.decay,
                                     config.decay_epoch)

    i = 0
    graph = tf.Graph()
    with graph.as_default():
        trainm = CTR_ggnn(config, device, loader, "Train")
        testm = CTR_ggnn(config, device, loader, "Valid")

    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)
    session_config.gpu_options.allow_growth = True

    with tf.Session(graph=graph, config=session_config) as session:
        # session.run(tf.global_variables_initializer())
        CTR_GNN_loader(session, config)
        best_auc = 0.
        best_logloss = 1.
        best_epoch_auc = 0.
        best_epoch_logloss = 0.
        auc = 0.
        for epoch in range(config.epoch_num):
            trainm.update_lr(session, lr_updater.get_lr())
            cost, auc = run(session, config, trainm, loader, verbose=True)
            INFO_LOG("Epoch %d Train AUC %.3f" % (epoch + 1, auc))
            INFO_LOG("Epoch %d Train costs %.3f" % (epoch, cost))
            session.run(tf.local_variables_initializer())

            cost, auc = run(session, config, testm, loader, verbose=True)
            INFO_LOG("Epoch %d Valid AUC %.3f" % (epoch, auc))
            INFO_LOG("Epoch %d Valid cost %.3f" % (epoch, cost))
            # #

            lr_updater.update(auc, epoch)
            if best_auc < auc:
                best_auc = auc
                best_epoch_auc = epoch
                CTR_GNN_saver(session, config, best_auc, best_epoch_auc)

            if best_logloss > cost:
                best_logloss = cost
                best_epoch_logloss = epoch
                # CTR_GNN_saver(session, config, best_epoch_logloss, best_epoch_logloss)

            INFO_LOG("*** best AUC now is %.3f in %d epoch" %
                     (best_auc, best_epoch_auc))
            INFO_LOG("*** best logloss now is %.3f in %d epoch" %
                     (best_logloss, best_epoch_logloss))

            if epoch % 300 == 0 and epoch != 0:
                loader.change_data_list(loader.increase_data_idx())