def semisynthetic_test_paper_1(): console.write_header("Loading Native symbols") symbolClasses = loader.load_native_xls() console.write_header("Loading Foreign symbols") foreignClasses = loader.load_foreign_xls() util.global_variables.CLASS_NUM = len(symbolClasses) util.global_variables.CHAR_NUM = len(symbolClasses[0].learning_set[0].characteristicsValues) # CREATE ELLIPSOIDS AND CUBOIDS FOR EACH LEARNING SET console.write_header("Generating Convex and Compact Sets") membership = BasicMembership(symbolClasses, False) membership.shrink_objects(0) # just to write to he file for i in range(0,5): # Check native membership.check_natives_ellipsoid_proper(symbolClasses[:],"foreign_REAL","foreign_REAL") membership.check_natives_cuboid_proper(symbolClasses[:],"foreign_REAL","foreign_REAL") # Check foreign membership.check_foreign_ellipsoid(foreignClasses, "foreign_REAL") membership.check_foreign_cuboids(foreignClasses, "foreign_REAL") # Shrink if i != 4: membership.shrink_objects(5)
def static_k_semisynthetic_test_paper_2(): console.write_header("Loading Native symbols") symbolClasses = loader.load_native_xls() console.write_header("Loading Foreign symbols") foreignClasses = loader.load_foreign_xls() util.global_variables.CLASS_NUM = len(symbolClasses) util.global_variables.CHAR_NUM = len(symbolClasses[0].learning_set[0].characteristicsValues) Clusterer().computeClusters(symbolClasses) paper2.compute(symbolClasses, foreignClasses)
def real_data(): console.write_header("Loading Native symbols") symbolClasses = loader.load_native_xls() console.write_header("Loading Foreign symbols") foreignClasses = loader.load_foreign_xls() util.global_variables.CLASS_NUM = len(symbolClasses) util.global_variables.CHAR_NUM = len(symbolClasses[0].learning_set[0].characteristicsValues) for c in range(0, util.global_variables.CLASS_NUM): console.write_header("Computing Cluster Evaluation") best_k = ps.cluster_evaluation(util.global_variables.MAX_K_CLUS_EVALUATION, symbolClasses[c:c+1]) util.global_variables.K = best_k[0] console.write_header("Computing Clusters with K:", str(util.global_variables.K)) Clusterer().computeClusters(symbolClasses[c:c+1]) console.write_header(" Synthetic Data Calculations") synth_calc.ambiguity_for_different_radiuses_real_data(symbolClasses[:], foreignClasses)
def semisynthetic_test_paper_2(): console.write_header("Loading Native symbols") symbolClasses = loader.load_native_xls() console.write_header("Loading Foreign symbols") foreignClasses = loader.load_foreign_xls() util.global_variables.CLASS_NUM = len(symbolClasses) util.global_variables.CHAR_NUM = len(symbolClasses[0].learning_set[0].characteristicsValues) # COMPUTE CLUSTER EVALUATION for c in range(0, util.global_variables.CLASS_NUM): console.write_header("Computing Cluster Evaluation") best_k = ps.cluster_evaluation(util.global_variables.MAX_K_CLUS_EVALUATION, symbolClasses[c:c+1]) util.global_variables.K = best_k[0] console.write_header("Computing Clusters with K:", str(util.global_variables.K)) Clusterer().computeClusters(symbolClasses[c:c+1]) paper2.compute(symbolClasses, foreignClasses)
def __serialize(): logger.log_header("Serializing") nativeElements = loader.load_native_xls() loader.serialize_chosen_elements(nativeElements)