Esempio n. 1
0
def augment_with_pretrained(dictionary, ext_emb_path, words):
    """
    Augment the dictionary with words that have a pretrained embedding.
    If `words` is None, we add every word that has a pretrained embedding
    to the dictionary, otherwise, we only add the words that are given by
    `words` (typically the words in the development and test sets.)
    """
    print('Loading pretrained embeddings from %s...' % ext_emb_path)
    assert os.path.isfile(ext_emb_path)

    # Load pretrained embeddings from file
    pretrained = set([
        line.rstrip().split()[0].strip()
        for line in codecs.open(ext_emb_path, 'r', 'utf-8')
        if len(ext_emb_path) > 0 and len(line.rstrip().split()) > 0
    ])

    # We either add every word in the pretrained file,
    # or only words given in the `words` list to which
    # we can assign a pretrained embedding
    if words is None:
        for word in pretrained:
            if word not in dictionary:
                dictionary[word] = 0
    else:
        for word in words:
            if any(
                    x in pretrained for x in
                [word, word.lower(),
                 re.sub('\d', '0', word.lower())]) and word not in dictionary:
                dictionary[word] = 0

    word_to_id, id_to_word = create_mapping(dictionary)
    return dictionary, word_to_id, id_to_word
Esempio n. 2
0
def tag_mapping(sentences):
    """
    Create a dictionary and a mapping of tags, sorted by frequency.
    """
    tags = [[word[-1] for word in s] for s in sentences]
    dico = create_dico(tags)
    dico[model.START_TAG] = -1
    dico[model.STOP_TAG] = -2
    tag_to_id, id_to_tag = create_mapping(dico)
    print("Found %i unique named entity tags" % len(dico))
    return dico, tag_to_id, id_to_tag
Esempio n. 3
0
def char_mapping(sentences):
    """
    Create a dictionary and mapping of characters, sorted by frequency.
    """
    chars = ["".join([w[0] for w in s]) for s in sentences]
    dico = create_dico(chars)
    dico['<PAD>'] = 10000000
    # dico[';'] = 0
    char_to_id, id_to_char = create_mapping(dico)
    print("Found %i unique characters" % len(dico))
    return dico, char_to_id, id_to_char
Esempio n. 4
0
def word_mapping(sentences, lower):
    """
    Create a dictionary and a mapping of words, sorted by frequency.
    """
    words = [[x[0].lower() if lower else x[0] for x in s] for s in sentences]
    dico = create_dico(words)

    dico['<PAD>'] = 10000001
    dico['<UNK>'] = 10000000
    dico = {k: v for k, v in list(dico.items()) if v >= 3}
    word_to_id, id_to_word = create_mapping(dico)

    print("Found %i unique words (%i in total)" %
          (len(dico), sum(len(x) for x in words)))
    return dico, word_to_id, id_to_word