Esempio n. 1
0
  def register_FCGF(self, xyz0, xyz1, inlier_thr=0.00):
      '''
      Main algorithm of DeepGlobalRegistration
      '''
      self.reg_timer.tic()
      with torch.no_grad():
        # Step 0: voxelize and generate sparse input
        xyz0, coords0, feats0 = self.preprocess(xyz0)
        xyz1, coords1, feats1 = self.preprocess(xyz1)

        # Step 1: Feature extraction
        self.feat_timer.tic()
        fcgf_feats0 = self.fcgf_feature_extraction(feats0, coords0)
        fcgf_feats1 = self.fcgf_feature_extraction(feats1, coords1)
        self.feat_timer.toc()

        # Step 2: Coarse correspondences
        corres_idx0, corres_idx1 = self.fcgf_feature_matching(fcgf_feats0, fcgf_feats1)

        # > Case 1: Safeguard RANSAC + (Optional) ICP
        pcd0 = make_open3d_point_cloud(xyz0)
        pcd1 = make_open3d_point_cloud(xyz1)
        T = self.safeguard_registration(pcd0,
                                        pcd1,
                                        corres_idx0,
                                        corres_idx1,
                                        feats0,
                                        feats1,
                                        2 * self.voxel_size,
                                        num_iterations=80000)
        safeguard_time = self.reg_timer.toc()
        print(f'=> Safeguard takes {safeguard_time:.2} s')

      return T
Esempio n. 2
0
def do_single_pair_evaluation(feature_path,
                              set_name,
                              traj,
                              voxel_size,
                              tau_1=0.1,
                              tau_2=0.05,
                              num_rand_keypoints=-1):
    trans_gth = np.linalg.inv(traj.pose)
    i = traj.metadata[0]
    j = traj.metadata[1]
    name_i = "%s_%03d" % (set_name, i)
    name_j = "%s_%03d" % (set_name, j)

    # coord and feat form a sparse tensor.
    data_i = np.load(os.path.join(feature_path, name_i + ".npz"))
    coord_i, points_i, feat_i = data_i['xyz'], data_i['points'], data_i[
        'feature']
    data_j = np.load(os.path.join(feature_path, name_j + ".npz"))
    coord_j, points_j, feat_j = data_j['xyz'], data_j['points'], data_j[
        'feature']

    # use the keypoints in 3DMatch
    if num_rand_keypoints > 0:
        # Randomly subsample N points
        Ni, Nj = len(points_i), len(points_j)
        inds_i = np.random.choice(Ni,
                                  min(Ni, num_rand_keypoints),
                                  replace=False)
        inds_j = np.random.choice(Nj,
                                  min(Nj, num_rand_keypoints),
                                  replace=False)

        sample_i, sample_j = points_i[inds_i], points_j[inds_j]

        key_points_i = ME.utils.fnv_hash_vec(np.floor(sample_i / voxel_size))
        key_points_j = ME.utils.fnv_hash_vec(np.floor(sample_j / voxel_size))

        key_coords_i = ME.utils.fnv_hash_vec(np.floor(coord_i / voxel_size))
        key_coords_j = ME.utils.fnv_hash_vec(np.floor(coord_j / voxel_size))

        inds_i = np.where(np.isin(key_coords_i, key_points_i))[0]
        inds_j = np.where(np.isin(key_coords_j, key_points_j))[0]

        coord_i, feat_i = coord_i[inds_i], feat_i[inds_i]
        coord_j, feat_j = coord_j[inds_j], feat_j[inds_j]

    coord_i = make_open3d_point_cloud(coord_i)
    coord_j = make_open3d_point_cloud(coord_j)

    hit_ratio = evaluate_feature_3dmatch(coord_i, coord_j, feat_i, feat_j,
                                         trans_gth, tau_1)

    # logging.info(f"Hit ratio of {name_i}, {name_j}: {hit_ratio}, {hit_ratio >= tau_2}")
    if hit_ratio >= tau_2:
        return True
    else:
        return False
Esempio n. 3
0
  def register(self, xyz0, xyz1, inlier_thr=0.00):
    '''
    Main algorithm of DeepGlobalRegistration
    '''
    self.reg_timer.tic()
    T = o3d.registration.registration_icp(
        make_open3d_point_cloud(xyz0),
        make_open3d_point_cloud(xyz1), self.voxel_size * 2, np.identity(4),
        o3d.registration.TransformationEstimationPointToPoint()).transformation

    safeguard_time = self.reg_timer.toc()
    print(f'=> ICP takes {safeguard_time:.2} s')

    return T
Esempio n. 4
0
def read_data(feature_path, name):
  data = np.load(os.path.join(feature_path, name + ".npz"))
  xyz = make_open3d_point_cloud(data['xyz'])
  feat = make_open3d_feature_from_numpy(data['feature'])
  print("In benchmark_util.py - data['feature'] : ", data['feature'])
  print("In benchmark_util.py - data['feature'] shape : ", data['feature'].shape)
  print("In benchmark_util.py - feat : ", feat)

  print('-'*20)
  return data['points'], xyz, feat
  def register(self, xyz0, xyz1, T_gt=None):
    '''
    Main algorithm of DeepGlobalRegistration
    '''
    self.reg_timer.tic()
    with torch.no_grad():
      # Step 0: voxelize and generate sparse input
      xyz0, coords0, feats0 = self.preprocess(xyz0)
      xyz1, coords1, feats1 = self.preprocess(xyz1)

      # Step 1: Feature extraction
      self.feat_timer.tic()
      ## generate fpfh features
      pcd0 = make_open3d_point_cloud(xyz0)
      pcd1 = make_open3d_point_cloud(xyz1)
      pcd0.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.05*2, max_nn=30))
      fpfh0 = o3d.registration.compute_fpfh_feature(pcd0, o3d.geometry.KDTreeSearchParamHybrid(radius=0.05*5, max_nn=100))
      fpfh_np0 = np.array(fpfh0.data).T
      pcd1.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.05*2, max_nn=30))
      fpfh1 = o3d.registration.compute_fpfh_feature(pcd1, o3d.geometry.KDTreeSearchParamHybrid(radius=0.05*5, max_nn=100))
      fpfh_np1 = np.array(fpfh1.data).T
      fcgf_feats0 = torch.from_numpy(fpfh_np0).cuda()
      fcgf_feats1 = torch.from_numpy(fpfh_np1).cuda()
      import torch.nn.functional as F
      fcgf_feats0 = F.normalize(fcgf_feats0, dim=-1)
      fcgf_feats1 = F.normalize(fcgf_feats1, dim=-1)

      # fcgf_feats0 = self.fcgf_feature_extraction(feats0, coords0)
      # fcgf_feats1 = self.fcgf_feature_extraction(feats1, coords1)
      self.feat_timer.toc()
      # np.savez_compressed(
      #   os.path.join('KITTI_trainval/', f'kitti_pair_{i}'),
      #   xyz0=xyz0.detach().cpu().numpy(),
      #   features0=fcgf_feats0.detach().cpu().numpy(),
      #   xyz1=xyz1.detach().cpu().numpy(),
      #   features1=fcgf_feats1.detach().cpu().numpy(),
      #   gt_trans=T_gt
      # )

      # Step 2: Coarse correspondences
      corres_idx0, corres_idx1 = self.fcgf_feature_matching(fcgf_feats0, fcgf_feats1)
      # _, corres_idx0 = self.fcgf_feature_matching(fcgf_feats0, fcgf_feats1)
      # _, corres_idx1 = self.fcgf_feature_matching(fcgf_feats1, fcgf_feats0)
      # mutual_nearest = (corres_idx1[corres_idx0] == torch.arange(corres_idx0.shape[0]).cuda() )
      # # corr = []
      # # for i in range(len(corres_idx0)):
      # #   if corres_idx1[corres_idx0[i]] == i:
      # #     corr.append([i, corres_idx0[i]])
      # mutual_corres_idx0 = torch.where(mutual_nearest == 1)[0]
      # mutual_corres_idx1 = corres_idx0[mutual_nearest]
      # corres_idx0, corres_idx1 = mutual_corres_idx0, mutual_corres_idx1
      # Step 3: Inlier feature generation
      # coords[corres_idx0]: 1D temporal + 3D spatial coord
      # coords[corres_idx1, 1:]: 3D spatial coord
      # => 1D temporal + 6D spatial coord
      inlier_coords = torch.cat((coords0[corres_idx0], coords1[corres_idx1, 1:]),
                                dim=1).int()
      inlier_feats = self.inlier_feature_generation(xyz0, xyz1, coords0, coords1,
                                                    fcgf_feats0, fcgf_feats1,
                                                    corres_idx0, corres_idx1)

      # Step 4: Inlier likelihood estimation and truncation
      import time 
      s_time = time.time()
      logit = self.inlier_prediction(inlier_feats.contiguous(), coords=inlier_coords)
      weights = logit.sigmoid()
      if self.clip_weight_thresh > 0:
        weights[weights < self.clip_weight_thresh] = 0
      wsum = weights.sum().item()

    # Step 5: Registration. Note: torch's gradient may be required at this stage
    # > Case 0: Weighted Procrustes + Robust Refinement
    wsum_threshold = max(200, len(weights) * 0.05)
    # wsum_threshold = -1
    sign = '>=' if wsum >= wsum_threshold else '<'
    print(f'=> Weighted sum {wsum:.2f} {sign} threshold {wsum_threshold}')

    T = np.identity(4)
    safe_guard = 0
    if wsum >= wsum_threshold:
      try:
        rot, trans, opt_output = GlobalRegistration(xyz0[corres_idx0],
                                                    xyz1[corres_idx1],
                                                    weights=weights.detach().cpu(),
                                                    break_threshold_ratio=1e-4,
                                                    quantization_size=2 *
                                                    self.voxel_size,
                                                    verbose=False)
        T[0:3, 0:3] = rot.detach().cpu().numpy()
        T[0:3, 3] = trans.detach().cpu().numpy()
        dgr_time = self.reg_timer.toc()
        print(f'=> DGR takes {dgr_time:.2} s')

      except RuntimeError:
        # Will directly go to Safeguard
        print('###############################################')
        print('# WARNING: SVD failed, weights sum: ', wsum)
        print('# Falling back to Safeguard')
        print('###############################################')

    else:
      safe_guard = 1
      # > Case 1: Safeguard RANSAC + (Optional) ICP
      pcd0 = make_open3d_point_cloud(xyz0)
      pcd1 = make_open3d_point_cloud(xyz1)
      T = self.safeguard_registration(pcd0,
                                      pcd1,
                                      corres_idx0,
                                      corres_idx1,
                                      feats0,
                                      feats1,
                                      2 * self.voxel_size,
                                      num_iterations=80000)
      safeguard_time = self.reg_timer.toc()
      print(f'=> Safeguard takes {safeguard_time:.2} s')

    if self.use_icp:
      T = o3d.registration.registration_icp(
          make_open3d_point_cloud(xyz0),
          make_open3d_point_cloud(xyz1), self.voxel_size * 2, T,
          o3d.registration.TransformationEstimationPointToPoint()).transformation
    e_time = time.time() 

    eps = np.finfo(float).eps
    inlier_xyz0 = np.array(xyz0[corres_idx0])
    inlier_xyz1 = np.array(xyz1[corres_idx1])
    pcd0 = o3d.geometry.PointCloud()
    pcd0.points = o3d.utility.Vector3dVector(inlier_xyz0)
    pcd0.transform(T_gt)
    inlier_xyz0_warped = np.array(pcd0.points)
    dis = np.sqrt( np.sum( (inlier_xyz0_warped- inlier_xyz1)**2, -1) + eps)
    is_correct = dis < 2 * self.voxel_size
    
    target = torch.from_numpy(is_correct).squeeze()
    neg_target = (~target).to(torch.bool)
    pred = weights > self.clip_weight_thresh
    pred_on_pos, pred_on_neg = pred[target], pred[neg_target]
    tp = pred_on_pos.sum().item()
    fp = pred_on_neg.sum().item()
    tn = (~pred_on_neg).sum().item()
    fn = (~pred_on_pos).sum().item()
    precision = tp / (tp + fp + eps)
    recall = tp / (tp + fn + eps)
      
    return T, precision, recall, e_time - s_time, safe_guard
Esempio n. 6
0
  def __getitem__(self, idx):
    drive = self.files[idx][0]
    t0, t1 = self.files[idx][1], self.files[idx][2]
    all_odometry = self.get_video_odometry(drive, [t0, t1])
    positions = [self.odometry_to_positions(odometry) for odometry in all_odometry]
    fname0 = self._get_velodyne_fn(drive, t0)
    fname1 = self._get_velodyne_fn(drive, t1)

    # XYZ and reflectance
    xyzr0 = np.fromfile(fname0, dtype=np.float32).reshape(-1, 4)
    xyzr1 = np.fromfile(fname1, dtype=np.float32).reshape(-1, 4)

    xyz0 = xyzr0[:, :3]
    xyz1 = xyzr1[:, :3]

    key = '%d_%d_%d' % (drive, t0, t1)
    filename = self.icp_path + '/' + key + '.npy'
    if key not in kitti_icp_cache:
      if not os.path.exists(filename):
        # work on the downsampled xyzs, 0.05m == 5cm
        _, sel0 = ME.utils.sparse_quantize(xyz0 / 0.05, return_index=True)
        _, sel1 = ME.utils.sparse_quantize(xyz1 / 0.05, return_index=True)

        M = (self.velo2cam @ positions[0].T @ np.linalg.inv(positions[1].T)
             @ np.linalg.inv(self.velo2cam)).T
        xyz0_t = self.apply_transform(xyz0[sel0], M)
        pcd0 = make_open3d_point_cloud(xyz0_t)
        pcd1 = make_open3d_point_cloud(xyz1[sel1])
        reg = o3d.registration.registration_icp(
            pcd0, pcd1, 0.2, np.eye(4),
            o3d.registration.TransformationEstimationPointToPoint(),
            o3d.registration.ICPConvergenceCriteria(max_iteration=200))
        pcd0.transform(reg.transformation)
        # pcd0.transform(M2) or self.apply_transform(xyz0, M2)
        M2 = M @ reg.transformation
        # o3d.draw_geometries([pcd0, pcd1])
        # write to a file
        np.save(filename, M2)
      else:
        M2 = np.load(filename)
      kitti_icp_cache[key] = M2
    else:
      M2 = kitti_icp_cache[key]

    if self.random_rotation:
      T0 = sample_random_trans(xyz0, self.randg, np.pi / 4)
      T1 = sample_random_trans(xyz1, self.randg, np.pi / 4)
      trans = T1 @ M2 @ np.linalg.inv(T0)

      xyz0 = self.apply_transform(xyz0, T0)
      xyz1 = self.apply_transform(xyz1, T1)
    else:
      trans = M2

    matching_search_voxel_size = self.matching_search_voxel_size
    if self.random_scale and random.random() < 0.95:
      scale = self.min_scale + \
          (self.max_scale - self.min_scale) * random.random()
      matching_search_voxel_size *= scale
      xyz0 = scale * xyz0
      xyz1 = scale * xyz1

    # Voxelization
    xyz0_th = torch.from_numpy(xyz0)
    xyz1_th = torch.from_numpy(xyz1)

    _, sel0 = ME.utils.sparse_quantize(xyz0_th / self.voxel_size, return_index=True)
    _, sel1 = ME.utils.sparse_quantize(xyz1_th / self.voxel_size, return_index=True)

    # Make point clouds using voxelized points
    pcd0 = make_open3d_point_cloud(xyz0[sel0])
    pcd1 = make_open3d_point_cloud(xyz1[sel1])

    # Get matches
    matches = get_matching_indices(pcd0, pcd1, trans, matching_search_voxel_size)
    if len(matches) < 1000:
      raise ValueError(f"{drive}, {t0}, {t1}")

    # Get features
    npts0 = len(sel0)
    npts1 = len(sel1)

    feats_train0, feats_train1 = [], []

    unique_xyz0_th = xyz0_th[sel0]
    unique_xyz1_th = xyz1_th[sel1]

    feats_train0.append(torch.ones((npts0, 1)))
    feats_train1.append(torch.ones((npts1, 1)))

    feats0 = torch.cat(feats_train0, 1)
    feats1 = torch.cat(feats_train1, 1)

    coords0 = torch.floor(unique_xyz0_th / self.voxel_size)
    coords1 = torch.floor(unique_xyz1_th / self.voxel_size)

    if self.transform:
      coords0, feats0 = self.transform(coords0, feats0)
      coords1, feats1 = self.transform(coords1, feats1)

    return (unique_xyz0_th.float(), unique_xyz1_th.float(), coords0.int(),
            coords1.int(), feats0.float(), feats1.float(), matches, trans)
Esempio n. 7
0
  def __getitem__(self, idx):
    file0 = os.path.join(self.root, self.files[idx][0])
    file1 = os.path.join(self.root, self.files[idx][1])
    data0 = np.load(file0)
    data1 = np.load(file1)
    xyz0 = data0["pcd"]
    xyz1 = data1["pcd"]
    color0 = data0["color"]
    color1 = data1["color"]
    matching_search_voxel_size = self.matching_search_voxel_size

    if self.random_scale and random.random() < 0.95:
      scale = self.min_scale + \
          (self.max_scale - self.min_scale) * random.random()
      matching_search_voxel_size *= scale
      xyz0 = scale * xyz0
      xyz1 = scale * xyz1

    if self.random_rotation:
      T0 = sample_random_trans(xyz0, self.randg, self.rotation_range)
      T1 = sample_random_trans(xyz1, self.randg, self.rotation_range)
      trans = T1 @ np.linalg.inv(T0)

      xyz0 = self.apply_transform(xyz0, T0)
      xyz1 = self.apply_transform(xyz1, T1)
    else:
      trans = np.identity(4)

    # Voxelization
    _, sel0 = ME.utils.sparse_quantize(xyz0 / self.voxel_size, return_index=True)
    _, sel1 = ME.utils.sparse_quantize(xyz1 / self.voxel_size, return_index=True)

    # Make point clouds using voxelized points
    pcd0 = make_open3d_point_cloud(xyz0)
    pcd1 = make_open3d_point_cloud(xyz1)

    # Select features and points using the returned voxelized indices
    pcd0.colors = o3d.utility.Vector3dVector(color0[sel0])
    pcd1.colors = o3d.utility.Vector3dVector(color1[sel1])
    pcd0.points = o3d.utility.Vector3dVector(np.array(pcd0.points)[sel0])
    pcd1.points = o3d.utility.Vector3dVector(np.array(pcd1.points)[sel1])
    # Get matches
    matches = get_matching_indices(pcd0, pcd1, trans, matching_search_voxel_size)

    # Get features
    npts0 = len(pcd0.colors)
    npts1 = len(pcd1.colors)

    feats_train0, feats_train1 = [], []

    feats_train0.append(np.ones((npts0, 1)))
    feats_train1.append(np.ones((npts1, 1)))

    feats0 = np.hstack(feats_train0)
    feats1 = np.hstack(feats_train1)

    # Get coords
    xyz0 = np.array(pcd0.points)
    xyz1 = np.array(pcd1.points)

    coords0 = np.floor(xyz0 / self.voxel_size)
    coords1 = np.floor(xyz1 / self.voxel_size)

    if self.transform:
      coords0, feats0 = self.transform(coords0, feats0)
      coords1, feats1 = self.transform(coords1, feats1)

    return (xyz0, xyz1, coords0, coords1, feats0, feats1, matches, trans)
Esempio n. 8
0
def read_data(feature_path, name):
    data = np.load(os.path.join(feature_path, name + ".npz"))
    xyz = make_open3d_point_cloud(data['xyz'])
    feat = make_open3d_feature_from_numpy(data['feature'])
    return data['points'], xyz, feat
Esempio n. 9
0
    def __getitem__(self, idx):
        file0 = os.path.join(self.root, self.files[idx][0])
        file1 = os.path.join(self.root, self.files[idx][1])
        data0 = np.load(file0)
        data1 = np.load(file1)
        # 这俩点云读进来是可以拼在一起的,只不过都只是完整点云的一部分
        xyz0 = data0["pcd"]#50万左右个点
        xyz1 = data1["pcd"]
        color0 = data0["color"]#每个点都有它自己的颜色,且不一样
        color1 = data1["color"]
        matching_search_voxel_size = self.matching_search_voxel_size #0.0375

        if self.random_scale and random.random() < 0.95:
            scale = self.min_scale + \
                    (self.max_scale - self.min_scale) * random.random()
            matching_search_voxel_size *= scale
            xyz0 = scale * xyz0
            xyz1 = scale * xyz1

        if self.random_rotation:
            T0 = sample_random_trans(xyz0, self.randg, self.rotation_range) #rotation_range:360 且旋转平移之后的点云中心坐标为0
            T1 = sample_random_trans(xyz1, self.randg, self.rotation_range)
            # xyz0到xyz1的相对位姿
            trans = T1 @ np.linalg.inv(T0)

            xyz0 = self.apply_transform(xyz0, T0)
            xyz1 = self.apply_transform(xyz1, T1)
        else:
            trans = np.identity(4)

        # Voxelization voxel_size 0.025
        _, sel0 = ME.utils.sparse_quantize(xyz0 / self.voxel_size, return_index=True)
        _, sel1 = ME.utils.sparse_quantize(xyz1 / self.voxel_size, return_index=True)

        # 用稀疏点云生成pcd
        pcd0 = make_open3d_point_cloud(xyz0)
        pcd1 = make_open3d_point_cloud(xyz1)
        # Select features and points using the returned voxelized indices
        pcd0.colors = o3d.utility.Vector3dVector(color0[sel0])
        pcd1.colors = o3d.utility.Vector3dVector(color1[sel1])
        pcd0.points = o3d.utility.Vector3dVector(np.array(pcd0.points)[sel0])
        pcd1.points = o3d.utility.Vector3dVector(np.array(pcd1.points)[sel1])
        # Get matches
        # matches包含了点云1的每一点在点云二的(一定范围内的 #0.0375)匹配点
        matches = get_matching_indices(pcd0, pcd1, trans, matching_search_voxel_size)

        # Get features,特征都为1
        npts0 = len(pcd0.colors)
        npts1 = len(pcd1.colors)

        feats_train0, feats_train1 = [], []

        feats_train0.append(np.ones((npts0, 1)))
        feats_train1.append(np.ones((npts1, 1)))

        feats0 = np.hstack(feats_train0)
        feats1 = np.hstack(feats_train1)

        # Get coords
        xyz0 = np.array(pcd0.points)
        xyz1 = np.array(pcd1.points)

        coords0 = np.floor(xyz0 / self.voxel_size)
        coords1 = np.floor(xyz1 / self.voxel_size)

        if self.transform:
            coords0, feats0 = self.transform(coords0, feats0)
            coords1, feats1 = self.transform(coords1, feats1)

        # 返回体素化之后的np点云,稀疏点云坐标、特征,匹配关系,真实旋转平移
        return (xyz0, xyz1, coords0, coords1, feats0, feats1, matches, trans)
Esempio n. 10
0
def main(config):
    test_loader = make_data_loader(
        config, config.test_phase, 1, num_threads=config.test_num_workers, shuffle=True)

    num_feats = 1

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    Model = load_model(config.model)
    model = Model(
        num_feats,
        config.model_n_out,
        bn_momentum=config.bn_momentum,
        conv1_kernel_size=config.conv1_kernel_size,
        normalize_feature=config.normalize_feature)
    checkpoint = torch.load(config.save_dir + '/checkpoint.pth')
    model.load_state_dict(checkpoint['state_dict'])
    model = model.to(device)
    model.eval()

    success_meter, rte_meter, rre_meter = AverageMeter(), AverageMeter(), AverageMeter()
    data_timer, feat_timer, reg_timer = Timer(), Timer(), Timer()

    test_iter = test_loader.__iter__()
    N = len(test_iter)
    n_gpu_failures = 0

    # downsample_voxel_size = 2 * config.voxel_size

    for i in range(len(test_iter)):
        data_timer.tic()
        try:
            data_dict = test_iter.next()
        except ValueError:
            n_gpu_failures += 1
            logging.info(f"# Erroneous GPU Pair {n_gpu_failures}")
            continue
        data_timer.toc()
        xyz0, xyz1 = data_dict['pcd0'], data_dict['pcd1']
        T_gth = data_dict['T_gt']
        xyz0np, xyz1np = xyz0.numpy(), xyz1.numpy()

        pcd0 = make_open3d_point_cloud(xyz0np)
        pcd1 = make_open3d_point_cloud(xyz1np)

        with torch.no_grad():
            feat_timer.tic()
            sinput0 = ME.SparseTensor(
                data_dict['sinput0_F'].to(device), coordinates=data_dict['sinput0_C'].to(device))
            F0 = model(sinput0).F.detach()
            sinput1 = ME.SparseTensor(
                data_dict['sinput1_F'].to(device), coordinates=data_dict['sinput1_C'].to(device))
            F1 = model(sinput1).F.detach()
            feat_timer.toc()

        feat0 = make_open3d_feature(F0, 32, F0.shape[0])
        feat1 = make_open3d_feature(F1, 32, F1.shape[0])

        reg_timer.tic()
        distance_threshold = config.voxel_size * 1.0
        ransac_result = o3d.registration.registration_ransac_based_on_feature_matching(
            pcd0, pcd1, feat0, feat1, distance_threshold,
            o3d.registration.TransformationEstimationPointToPoint(False), 4, [
                o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
                o3d.registration.CorrespondenceCheckerBasedOnDistance(
                    distance_threshold)
            ], o3d.registration.RANSACConvergenceCriteria(4000000, 10000))
        T_ransac = torch.from_numpy(
            ransac_result.transformation.astype(np.float32))
        reg_timer.toc()

        # Translation error
        rte = np.linalg.norm(T_ransac[:3, 3] - T_gth[:3, 3])
        rre = np.arccos((np.trace(T_ransac[:3, :3].t() @ T_gth[:3, :3]) - 1) / 2)

        # Check if the ransac was successful. successful if rte < 2m and rre < 5◦
        # http://openaccess.thecvf.com/content_ECCV_2018/papers/Zi_Jian_Yew_3DFeat-Net_Weakly_Supervised_ECCV_2018_paper.pdf
        if rte < 2:
            rte_meter.update(rte)

        if not np.isnan(rre) and rre < np.pi / 180 * 5:
            rre_meter.update(rre)

        if rte < 2 and not np.isnan(rre) and rre < np.pi / 180 * 5:
            success_meter.update(1)
        else:
            success_meter.update(0)
            logging.info(f"Failed with RTE: {rte}, RRE: {rre}")

        if i % 10 == 0:
            logging.info(
                f"{i} / {N}: Data time: {data_timer.avg}, Feat time: {feat_timer.avg}," +
                f" Reg time: {reg_timer.avg}, RTE: {rte_meter.avg}," +
                f" RRE: {rre_meter.avg}, Success: {success_meter.sum} / {success_meter.count}"
                + f" ({success_meter.avg * 100} %)")
            data_timer.reset()
            feat_timer.reset()
            reg_timer.reset()

    logging.info(
        f"RTE: {rte_meter.avg}, var: {rte_meter.var}," +
        f" RRE: {rre_meter.avg}, var: {rre_meter.var}, Success: {success_meter.sum} " +
        f"/ {success_meter.count} ({success_meter.avg * 100} %)")
Esempio n. 11
0
  def __getitem__(self, idx):
    drive = self.files[idx][0]
    t0, t1 = self.files[idx][1], self.files[idx][2]
    all_odometry = self.get_video_odometry(drive, [t0, t1])
    positions = [self.odometry_to_positions(odometry) for odometry in all_odometry]
    fname0 = self._get_velodyne_fn(drive, t0)
    fname1 = self._get_velodyne_fn(drive, t1)

    # XYZ and reflectance
    xyzr0 = np.fromfile(fname0, dtype=np.float32).reshape(-1, 4)
    xyzr1 = np.fromfile(fname1, dtype=np.float32).reshape(-1, 4)

    xyz0 = xyzr0[:, :3]
    xyz1 = xyzr1[:, :3]

    coords0 = (xyz0 - xyz0.min(0)) / 0.05
    coords1 = (xyz1 - xyz1.min(0)) / 0.05

    sel0 = ME.utils.sparse_quantize(coords0, return_index=True)
    sel1 = ME.utils.sparse_quantize(coords1, return_index=True)

    xyz0 = xyz0[sel0]
    xyz1 = xyz1[sel1]

    # r0 = xyzr0[:, -1].reshape(-1, 1)
    # r1 = xyzr1[:, -1].reshape(-1, 1)

    # pcd0 = make_open3d_point_cloud(xyz0_t, 0.7 * np.ones((len(xyz0), 3)))
    # pcd1 = make_open3d_point_cloud(xyz1, 0.3 * np.ones((len(xyz1), 3)))

    key = '%d_%d_%d' % (drive, t0, t1)
    filename = self.icp_path + '/' + key + '.npy'
    if key not in kitti_icp_cache:
      if not os.path.exists(filename):
        if self.IS_ODOMETRY:
          M = (self.velo2cam @ positions[0].T @ np.linalg.inv(positions[1].T)
               @ np.linalg.inv(self.velo2cam)).T
        else:
          M = self.get_position_transform(positions[0], positions[1], invert=True).T
        xyz0_t = self.apply_transform(xyz0, M)
        pcd0 = make_open3d_point_cloud(xyz0_t)
        pcd1 = make_open3d_point_cloud(xyz1)
        reg = o3d.registration_icp(pcd0, pcd1, 0.2, np.eye(4),
                                   o3d.TransformationEstimationPointToPoint(),
                                   o3d.ICPConvergenceCriteria(max_iteration=200))
        pcd0.transform(reg.transformation)
        # pcd0.transform(M2) or self.apply_transform(xyz0, M2)
        M2 = M @ reg.transformation
        # o3d.draw_geometries([pcd0, pcd1])
        # write to a file
        np.save(filename, M2)
      else:
        M2 = np.load(filename)
      kitti_icp_cache[key] = M2
    else:
      M2 = kitti_icp_cache[key]

    if self.random_rotation:
      T0 = sample_random_trans(xyz0, self.randg, np.pi / 4)
      T1 = sample_random_trans(xyz1, self.randg, np.pi / 4)
      trans = T1 @ M2 @ np.linalg.inv(T0)

      xyz0 = self.apply_transform(xyz0, T0)
      xyz1 = self.apply_transform(xyz1, T1)
    else:
      trans = M2

    matching_search_voxel_size = self.matching_search_voxel_size
    if self.random_scale and random.random() < 0.95:
      scale = self.min_scale + \
          (self.max_scale - self.min_scale) * random.random()
      matching_search_voxel_size *= scale
      xyz0 = scale * xyz0
      xyz1 = scale * xyz1

    # Voxelization
    coords0 = np.floor(xyz0 / self.voxel_size)
    coords1 = np.floor(xyz1 / self.voxel_size)
    sel0 = ME.utils.sparse_quantize(coords0, return_index=True)
    sel1 = ME.utils.sparse_quantize(coords1, return_index=True)
    coords0, coords1 = coords0[sel0], coords1[sel1]
    # r0, r1 = r0[sel0], r1[sel1]

    pcd0 = make_open3d_point_cloud(xyz0)
    pcd1 = make_open3d_point_cloud(xyz1)

    # Select features and points using the returned voxelized indices
    pcd0.points = o3d.utility.Vector3dVector(np.array(pcd0.points)[sel0])
    pcd1.points = o3d.utility.Vector3dVector(np.array(pcd1.points)[sel1])

    # Get matches
    matches = get_matching_indices(pcd0, pcd1, trans, matching_search_voxel_size)
    if len(matches) < 1000:
      raise ValueError(f"{drive}, {t0}, {t1}")

    feats_train0, feats_train1 = [], []

    feats_train0.append(np.ones((len(sel0), 1)))
    feats_train1.append(np.ones((len(sel1), 1)))

    feats0 = np.hstack(feats_train0)
    feats1 = np.hstack(feats_train1)

    # Get coords
    xyz0 = np.array(pcd0.points)
    xyz1 = np.array(pcd1.points)

    if self.transform:
      coords0, feats0 = self.transform(coords0, feats0)
      coords1, feats1 = self.transform(coords1, feats1)

    return (xyz0, xyz1, coords0, coords1, feats0, feats1, matches, trans)
Esempio n. 12
0
    def __getitem__(self, idx):
        file0 = os.path.join(self.root, self.files[idx][0])
        file1 = os.path.join(self.root, self.files[idx][1])
        data0 = np.load(file0)
        data1 = np.load(file1)
        xyz0 = data0["pcd"]
        xyz1 = data1["pcd"]
        matching_search_voxel_size = self.matching_search_voxel_size

        if self.random_scale and random.random() < 0.95:
            scale = self.min_scale + \
                (self.max_scale - self.min_scale) * random.random()
            matching_search_voxel_size *= scale
            xyz0 = scale * xyz0
            xyz1 = scale * xyz1

        if self.random_rotation:
            T0 = sample_random_trans(xyz0, self.randg, self.rotation_range)
            T1 = sample_random_trans(xyz1, self.randg, self.rotation_range)
            trans = T1 @ np.linalg.inv(T0)

            xyz0 = self.apply_transform(xyz0, T0)
            xyz1 = self.apply_transform(xyz1, T1)
        else:
            trans = np.identity(4)

        # Voxelization
        xyz0_th = torch.from_numpy(xyz0)
        xyz1_th = torch.from_numpy(xyz1)

        _, sel0 = ME.utils.sparse_quantize(xyz0_th / self.voxel_size,
                                           return_index=True)
        _, sel1 = ME.utils.sparse_quantize(xyz1_th / self.voxel_size,
                                           return_index=True)

        # Make point clouds using voxelized points
        pcd0 = make_open3d_point_cloud(xyz0[sel0])
        pcd1 = make_open3d_point_cloud(xyz1[sel1])

        # Select features and points using the returned voxelized indices
        # 3DMatch color is not helpful
        # pcd0.colors = o3d.utility.Vector3dVector(color0[sel0])
        # pcd1.colors = o3d.utility.Vector3dVector(color1[sel1])

        # Get matches
        matches = get_matching_indices(pcd0, pcd1, trans,
                                       matching_search_voxel_size)

        # Get features
        npts0 = len(sel0)
        npts1 = len(sel1)

        feats_train0, feats_train1 = [], []

        unique_xyz0_th = xyz0_th[sel0]
        unique_xyz1_th = xyz1_th[sel1]

        # xyz as feats
        if self.use_xyz_feature:
            feats_train0.append(unique_xyz0_th - unique_xyz0_th.mean(0))
            feats_train1.append(unique_xyz1_th - unique_xyz1_th.mean(0))
        else:
            feats_train0.append(torch.ones((npts0, 1)))
            feats_train1.append(torch.ones((npts1, 1)))

        feats0 = torch.cat(feats_train0, 1)
        feats1 = torch.cat(feats_train1, 1)

        coords0 = torch.floor(unique_xyz0_th / self.voxel_size)
        coords1 = torch.floor(unique_xyz1_th / self.voxel_size)

        if self.transform:
            coords0, feats0 = self.transform(coords0, feats0)
            coords1, feats1 = self.transform(coords1, feats1)

        extra_package = {'idx': idx, 'file0': file0, 'file1': file1}

        return (unique_xyz0_th.float(), unique_xyz1_th.float(), coords0.int(),
                coords1.int(), feats0.float(), feats1.float(), matches, trans,
                extra_package)
Esempio n. 13
0
  def register(self, xyz0, xyz1, inlier_thr=0.00):
    '''
    Main algorithm of DeepGlobalRegistration
    '''
    self.reg_timer.tic()
    with torch.no_grad():
      # Step 0: voxelize and generate sparse input
      xyz0, coords0, feats0 = self.preprocess(xyz0)
      xyz1, coords1, feats1 = self.preprocess(xyz1)

      # Step 1: Feature extraction
      self.feat_timer.tic()
      fcgf_feats0 = self.fcgf_feature_extraction(feats0, coords0)
      fcgf_feats1 = self.fcgf_feature_extraction(feats1, coords1)
      self.feat_timer.toc()

      # Step 2: Coarse correspondences
      corres_idx0, corres_idx1 = self.fcgf_feature_matching(fcgf_feats0, fcgf_feats1)

      # Step 3: Inlier feature generation
      # coords[corres_idx0]: 1D temporal + 3D spatial coord
      # coords[corres_idx1, 1:]: 3D spatial coord
      # => 1D temporal + 6D spatial coord
      inlier_coords = torch.cat((coords0[corres_idx0], coords1[corres_idx1, 1:]),
                                dim=1).int()
      inlier_feats = self.inlier_feature_generation(xyz0, xyz1, coords0, coords1,
                                                    fcgf_feats0, fcgf_feats1,
                                                    corres_idx0, corres_idx1)

      # Step 4: Inlier likelihood estimation and truncation
      logit = self.inlier_prediction(inlier_feats.contiguous(), coords=inlier_coords)
      weights = logit.sigmoid()
      if self.clip_weight_thresh > 0:
        weights[weights < self.clip_weight_thresh] = 0
      wsum = weights.sum().item()

    # Step 5: Registration. Note: torch's gradient may be required at this stage
    # > Case 0: Weighted Procrustes + Robust Refinement
    wsum_threshold = max(200, len(weights) * 0.05)
    sign = '>=' if wsum >= wsum_threshold else '<'
    print(f'=> Weighted sum {wsum:.2f} {sign} threshold {wsum_threshold}')

    T = np.identity(4)
    if wsum >= wsum_threshold:
      try:
        rot, trans, opt_output = GlobalRegistration(xyz0[corres_idx0],
                                                    xyz1[corres_idx1],
                                                    weights=weights.detach().cpu(),
                                                    break_threshold_ratio=1e-4,
                                                    quantization_size=2 *
                                                    self.voxel_size,
                                                    verbose=False)
        T[0:3, 0:3] = rot.detach().cpu().numpy()
        T[0:3, 3] = trans.detach().cpu().numpy()
        dgr_time = self.reg_timer.toc()
        print(f'=> DGR takes {dgr_time:.2} s')

      except RuntimeError:
        # Will directly go to Safeguard
        print('###############################################')
        print('# WARNING: SVD failed, weights sum: ', wsum)
        print('# Falling back to Safeguard')
        print('###############################################')

    else:
      # > Case 1: Safeguard RANSAC + (Optional) ICP
      pcd0 = make_open3d_point_cloud(xyz0)
      pcd1 = make_open3d_point_cloud(xyz1)
      T = self.safeguard_registration(pcd0,
                                      pcd1,
                                      corres_idx0,
                                      corres_idx1,
                                      feats0,
                                      feats1,
                                      2 * self.voxel_size,
                                      num_iterations=80000)
      safeguard_time = self.reg_timer.toc()
      print(f'=> Safeguard takes {safeguard_time:.2} s')

    if self.use_icp:
      T = o3d.registration.registration_icp(
          make_open3d_point_cloud(xyz0),
          make_open3d_point_cloud(xyz1), self.voxel_size * 2, T,
          o3d.registration.TransformationEstimationPointToPoint()).transformation

    return T
    def __getitem__(self, idx):

        drive = self.U.pairs[idx, 0]
        t0 = self.U.pairs[idx, 1]
        t1 = self.U.pairs[idx, 2]
        M2, xyz0, xyz1 = self.U.get_pair(idx)

        if self.random_rotation:
            T0 = sample_almost_planar_rotation(self.randg)
            T1 = sample_almost_planar_rotation(self.randg)
            trans = T1 @ M2 @ np.linalg.inv(T0)

            xyz0 = self.apply_transform(xyz0, T0)
            xyz1 = self.apply_transform(xyz1, T1)
        else:
            trans = M2

        matching_search_voxel_size = self.matching_search_voxel_size
        if self.random_scale and random.random() < 0.95:
            scale = self.min_scale + \
                (self.max_scale - self.min_scale) * random.random()
            matching_search_voxel_size *= scale
            xyz0 = scale * xyz0
            xyz1 = scale * xyz1
            M2[:3, 3] *= scale

        # Voxelization
        xyz0_th = torch.from_numpy(xyz0)
        xyz1_th = torch.from_numpy(xyz1)

        _, sel0 = ME.utils.sparse_quantize(xyz0_th / self.voxel_size,
                                           return_index=True)
        _, sel1 = ME.utils.sparse_quantize(xyz1_th / self.voxel_size,
                                           return_index=True)

        # Make point clouds using voxelized points
        pcd0 = make_open3d_point_cloud(xyz0[sel0])
        pcd1 = make_open3d_point_cloud(xyz1[sel1])

        # Get matches
        matches = get_matching_indices(pcd0, pcd1, trans,
                                       matching_search_voxel_size)

        # Get features
        npts0 = len(sel0)
        npts1 = len(sel1)

        feats_train0, feats_train1 = [], []

        unique_xyz0_th = xyz0_th[sel0]
        unique_xyz1_th = xyz1_th[sel1]

        feats_train0.append(torch.ones((npts0, 1)))
        feats_train1.append(torch.ones((npts1, 1)))

        feats0 = torch.cat(feats_train0, 1)
        feats1 = torch.cat(feats_train1, 1)

        coords0 = torch.floor(unique_xyz0_th / self.voxel_size)
        coords1 = torch.floor(unique_xyz1_th / self.voxel_size)

        if self.transform:
            coords0, feats0 = self.transform(coords0, feats0)
            coords1, feats1 = self.transform(coords1, feats1)

        extra_package = {'drive': drive, 't0': t0, 't1': t1}

        return (unique_xyz0_th.float(), unique_xyz1_th.float(), coords0.int(),
                coords1.int(), feats0.float(), feats1.float(), matches, trans,
                extra_package)
Esempio n. 15
0
def main(config):
    test_loader = make_data_loader(config,
                                   config.test_phase,
                                   1,
                                   num_threads=config.test_num_thread,
                                   shuffle=False)

    num_feats = 1

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    Model = load_model(config.model)
    model = Model(num_feats,
                  config.model_n_out,
                  bn_momentum=config.bn_momentum,
                  conv1_kernel_size=config.conv1_kernel_size,
                  normalize_feature=config.normalize_feature)
    checkpoint = torch.load(config.save_dir + '/checkpoint.pth')
    model.load_state_dict(checkpoint['state_dict'])
    model = model.to(device)
    model.eval()

    success_meter, rte_meter, rre_meter = AverageMeter(), AverageMeter(
    ), AverageMeter()
    data_timer, feat_timer, reg_timer = Timer(), Timer(), Timer()

    test_iter = test_loader.__iter__()
    N = len(test_iter)
    n_gpu_failures = 0

    # downsample_voxel_size = 2 * config.voxel_size
    list_results_to_save = []
    for i in range(len(test_iter)):
        data_timer.tic()
        try:
            data_dict = test_iter.next()
        except ValueError:
            n_gpu_failures += 1
            logging.info(f"# Erroneous GPU Pair {n_gpu_failures}")
            continue
        data_timer.toc()
        xyz0, xyz1 = data_dict['pcd0'], data_dict['pcd1']
        T_gth = data_dict['T_gt']
        xyz0np, xyz1np = xyz0.numpy(), xyz1.numpy()
        #import pdb
        # pdb.set_trace()
        pcd0 = make_open3d_point_cloud(xyz0np)
        pcd1 = make_open3d_point_cloud(xyz1np)

        with torch.no_grad():
            feat_timer.tic()
            sinput0 = ME.SparseTensor(
                data_dict['sinput0_F'].to(device),
                coordinates=data_dict['sinput0_C'].to(device))
            F0 = model(sinput0).F.detach()
            sinput1 = ME.SparseTensor(
                data_dict['sinput1_F'].to(device),
                coordinates=data_dict['sinput1_C'].to(device))
            F1 = model(sinput1).F.detach()
            feat_timer.toc()

        # saving files to pkl
        print(i)
        dict_sample = {
            "pts_source": xyz0np,
            "feat_source": F0.cpu().detach().numpy(),
            "pts_target": xyz1np,
            "feat_target": F1.cpu().detach().numpy()
        }

        list_results_to_save.append(dict_sample)

    import pickle
    path_results_to_save = "fcgf.results.pkl"
    print('Saving results to ', path_results_to_save)
    pickle.dump(list_results_to_save, open(path_results_to_save, 'wb'))
    print('Saved!')
    import pdb
    pdb.set_trace()
Esempio n. 16
0
    def __getitem__(self, idx):  # split, idx):
        
        if self.split == "test":
            sample =  self.list_test_sample[idx]

        else:
            T_noise = self.generate_noise_T()
            sample =   self.get_sample(idx, T_noise)

        xyz0 = sample["source"].points
        xyz1 = sample["target"].points
        
        trans = torch.Tensor(self.data["T_map"][idx])

        matching_search_voxel_size = self.matching_search_voxel_size

        import copy
#
        sel0 = ME.utils.sparse_quantize(
            xyz0.contiguous() / self.voxel_size, return_index=True)[1]
        sel1 = ME.utils.sparse_quantize(
            xyz1.contiguous() / self.voxel_size, return_index=True)[1]

        unique_xyz0_th = xyz0[sel0]  # [ind_0]
        unique_xyz1_th = xyz1[sel1]  # [ind_1]

        pcd0 = make_open3d_point_cloud(unique_xyz0_th)
        pcd1 = make_open3d_point_cloud(unique_xyz1_th)

        # Get matches
        matches = get_matching_indices(
            pcd0, pcd1, trans, matching_search_voxel_size)

        # Get features
        feats_train0, feats_train1 = [], []

        npts0 = unique_xyz0_th.shape[0]
        npts1 = unique_xyz1_th.shape[0]

        feats_train0.append(torch.ones((npts0, 1)))
        feats_train1.append(torch.ones((npts1, 1)))

        feats0 = torch.cat(feats_train0, 1)
        feats1 = torch.cat(feats_train1, 1)

        coords0 = np.floor(unique_xyz0_th / self.voxel_size)
        coords1 = np.floor(unique_xyz1_th / self.voxel_size)

        #coords0_mean = coords0.min(axis=0).int()
        #coords0 -=coords0_mean 

        if False:#len(matches) < 300:  # idx == 113:#len(matches) <
            print(self.split, "num matches = ", len(matches))
            print(coords0)
            pcd_target = o3d.geometry.PointCloud()
            pcd_target.points = o3d.utility.Vector3dVector(coords0)
            o3d.io.write_point_cloud("coords0_before_%d.ply" % idx, pcd_target)
#
            pcd_target = o3d.geometry.PointCloud()
            pcd_target.points = o3d.utility.Vector3dVector(coords1)
            o3d.io.write_point_cloud("coords1_before_%d.ply" % idx, pcd_target)
#

            pcd_target = o3d.geometry.PointCloud()
            pcd_target.points = o3d.utility.Vector3dVector(unique_xyz1_th)
            o3d.io.write_point_cloud("unique_xyz1_th_%d.ply" % idx, pcd_target)
#

            pcd_target = o3d.geometry.PointCloud()
            pcd_target.points = o3d.utility.Vector3dVector(unique_xyz0_th)
            o3d.io.write_point_cloud("unique_xyz0_th_%d.ply" % idx, pcd_target)
#
            pcd_target = o3d.geometry.PointCloud()
            pcd_target.points = o3d.utility.Vector3dVector(unique_xyz0_th)
            pcd_target.transform(trans)

            o3d.io.write_point_cloud(
                "unique_xyz0_th_trans_%d.ply" % idx, pcd_target)
#

            import pdb
            pdb.set_trace()

        #if self.transform:  # add noises to the point clouds
        #    coords0, feats0 = self.transform(coords0, feats0)
        #    coords1, feats1 = self.transform(coords1, feats1)

        return (unique_xyz0_th, unique_xyz1_th, coords0,
                coords1, feats0.float(), feats1.float(), matches, trans)