Esempio n. 1
0
 def forward(self):
     self.fake_x = self.netG(self.real_x, self.real_y)
     self.fake_x_IP = upsample2d(self.fake_x, self.opt.fineSize_IP)
     self.fake_x_E = upsample2d(self.fake_x, self.opt.fineSize_E)
     self.fake_y = self.netE(self.real_x_E)
     self.rec_x = self.netG(self.real_x, self.fake_y)
     self.rec_y = self.netE(self.fake_x_E)
Esempio n. 2
0
 def set_input(self, input):
     if self.isTrain:
         if not self.opt.no_mixed_label_D:
             self.real_A = input['A'].to(self.device)
             self.real_B = input['B'].to(self.device)
             self.age_A = input['A_age'].to(self.device)
             self.age_B = input['B_age'].to(self.device)
             self.label_AB = input['label']
             self.image_paths = input['B_paths']
         else:
             # sample a label for D (A < B or A > B)
             self.label_AB = [
                 np.random.choice(range(len(self.relabel_D)),
                                  p=self.weight_label_D)
             ]
             self.real_A = input[str(self.label_AB[0]) + '_A'].to(
                 self.device)
             self.real_B = input[str(self.label_AB[0]) + '_B'].to(
                 self.device)
             self.age_A = input[str(self.label_AB[0]) + '_A_age'].to(
                 self.device)
             self.age_B = input[str(self.label_AB[0]) + '_B_age'].to(
                 self.device)
             self.image_paths = input[str(self.label_AB[0]) + '_B_paths']
         self.real_A_IP = upsample2d(self.real_A, self.opt.fineSize_IP)
         self.real_A_E = upsample2d(self.real_A, self.opt.fineSize_E)
         self.real_B_E = upsample2d(self.real_B, self.opt.fineSize_E)
     else:
         self.real_A = input['A'].to(self.device)
         self.image_paths = input['A_paths']
     self.current_iter += 1
     self.current_batch_size = int(self.real_A.size(0))
Esempio n. 3
0
 def forward(self):
     self.fake_B = self.netG(self.real_A, self.one_hot_labels[self.label_B])
     self.fake_B_IP = upsample2d(self.fake_B, self.opt.fineSize_IP)
     self.fake_B_AC = upsample2d(self.fake_B, self.opt.fineSize_AC)
     if not self.opt.detach_fake_B:
         self.rec_A = self.netG(self.fake_B,
                                self.one_hot_labels[self.label_A])
     else:
         self.rec_A = self.netG(self.fake_B.detach(),
                                self.one_hot_labels[self.label_A])
Esempio n. 4
0
 def forward(self):
     self.embedding_A = self.embedding_normalize(self.age_A)
     self.embedding_B = self.embedding_normalize(self.age_B)
     self.fake_B = self.netG(self.real_A, self.embedding_B)
     self.fake_B_IP = upsample2d(self.fake_B, self.opt.fineSize_IP)
     self.fake_B_E = upsample2d(self.fake_B, self.opt.fineSize_E)
     if not self.opt.detach_fake_B:
         self.rec_A = self.netG(self.fake_B, self.embedding_A)
     else:
         self.rec_A = self.netG(self.fake_B.detach(), self.embedding_A)
Esempio n. 5
0
 def set_input(self, input):
     if self.isTrain:
         self.label_A, self.label_B, self.label_B_not = self.sample_labels()
         self.real_A = input[self.label_A].to(self.device)
         self.real_B = input[self.label_B].to(self.device)
         self.real_A_IP = upsample2d(self.real_A, self.opt.fineSize_IP)
         self.real_B_AC = upsample2d(self.real_B, self.opt.fineSize_AC)
         self.image_paths = input['path_' + str(self.label_B)]
     else:
         self.real_A = input['A'].to(self.device)
         self.image_paths = input['A_paths']
     self.current_iter += 1
     self.current_batch_size = int(self.real_A.size(0))
 def forward(self):
     if self.opt.lr_E > 0.0:
         self.embedding_A = self.embedding_normalize(self.netE(self.transform_E(self.real_A_E)))
         self.embedding_B = self.embedding_normalize(self.netE(self.transform_E(self.real_B_E)))
     else:
         self.embedding_A = self.embedding_normalize(self.netE(self.transform_E(self.real_A_E))).detach()
         self.embedding_B = self.embedding_normalize(self.netE(self.transform_E(self.real_B_E))).detach()
     self.fake_B = self.netG(self.real_A, self.embedding_B)
     self.fake_B_IP = upsample2d(self.fake_B, self.opt.fineSize_IP)
     self.fake_B_E = upsample2d(self.fake_B, self.opt.fineSize_E)
     if not self.opt.detach_fake_B:
         self.rec_A = self.netG(self.fake_B, self.embedding_A)
     else:
         self.rec_A = self.netG(self.fake_B.detach(), self.embedding_A)
Esempio n. 7
0
 def set_input(self, input):
     if self.isTrain:
         self.real_x = input['A'].to(self.device)
         self.real_y = self.attr_normalize(input['B_attr'].to(self.device))
         self.image_paths = input['B_paths']
         self.real_x_IP = upsample2d(self.real_x, self.opt.fineSize_IP)
         self.real_x_E = upsample2d(self.real_x, self.opt.fineSize_E)
     else:
         self.real_x = input['A'].to(self.device)
         self.image_paths = input['A_paths']
         if 'B_attr' in input:
             self.real_y = self.attr_normalize(input['B_attr'].to(
                 self.device))
             self.image_paths = input['B_paths']
     self.current_iter += 1
     self.current_batch_size = int(self.real_x.size(0))
Esempio n. 8
0
 def forward(self):
     self.real_A_IP = upsample2d(self.real_A, self.opt.fineSize_IP)
     self.real_A_E = upsample2d(self.real_A, self.opt.fineSize_E)
     self.real_B_E = upsample2d(self.real_B, self.opt.fineSize_E)
     if not self.opt.bayesian and not self.opt.noisy:
         y_A = self.netE(self.transform_E(self.real_A_E))
         y_B = self.netE(self.transform_E(self.real_B_E))
     elif not self.opt.bayesian and self.opt.noisy:
         y_A, logvar_A = self.netE(self.transform_E(self.real_A_E))
         y_B, logvar_B = self.netE(self.transform_E(self.real_B_E))
         if 'a' in self.opt.noisy_var_type:
             y_A_s2 = torch.exp(logvar_A)
             y_B_s2 = torch.exp(logvar_B)
             self.resample_A = self.embedding_normalize(resample(y_A, y_A_s2))
             self.resample_B = self.embedding_normalize(resample(y_B, y_B_s2))
     elif self.opt.bayesian and not self.opt.noisy:
         y_A, y_A_var = compute_mu_and_var(self.netE, self.transform_E(self.real_A_E), self.opt.bnn_T, False)
         y_B, y_B_var = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, False)
         if 'e' in self.opt.noisy_var_type:
             self.resample_A = self.embedding_normalize(resample(y_A, y_A_var))
             self.resample_B = self.embedding_normalize(resample(y_B, y_B_var))
     else:  # bayesian and noisy
         y_A, y_A_var, y_A_s2 = compute_mu_and_var(self.netE, self.transform_E(self.real_A_E), self.opt.bnn_T, True)
         y_B, y_B_var, y_B_s2 = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, True)
         if 'a' in self.opt.noisy_var_type:
             self.resample_A = self.embedding_normalize(resample(y_A, y_A_s2 + y_A_var))
             self.resample_B = self.embedding_normalize(resample(y_B, y_B_s2 + y_B_var))
     self.y_A = y_A
     self.y_B = y_B
     self.embedding_A = self.embedding_normalize(self.y_A)
     self.embedding_B = self.embedding_normalize(self.y_B)
     if self.opt.lr_E <= 0.0:
         self.y_A = self.y_A.detach()
         self.y_B = self.y_B.detach()
         self.embedding_A = self.embedding_A.detach()
         self.embedding_B = self.embedding_B.detach()
         if self.opt.noisy_var_type:  # noisy_var_type is not empty
             self.resample_A = self.resample_A.detach()
             self.resample_B = self.resample_B.detach()
     self.fake_B = self.netG(self.real_A, self.embedding_B)
     self.fake_B_IP = upsample2d(self.fake_B, self.opt.fineSize_IP)
     self.fake_B_E = upsample2d(self.fake_B, self.opt.fineSize_E)
     if not self.opt.detach_fake_B:
         self.rec_A = self.netG(self.fake_B, self.embedding_A)
     else:
         self.rec_A = self.netG(self.fake_B.detach(), self.embedding_A)
Esempio n. 9
0
 def sample_from_prior(self):
     real_B_E = upsample2d(self.real_B, self.opt.fineSize_E)
     # A -> B, sample embeddings according to B
     if not self.opt.bayesian and not self.opt.noisy:
         y_B = self.netE(self.transform_E(real_B_E))
     elif not self.opt.bayesian and self.opt.noisy:
         y_B, logvar_B = self.netE(self.transform_E(self.real_B_E))
     elif self.opt.bayesian and not self.opt.noisy:
         y_B, y_B_var = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, False)
     else:
         # bayesian and noisy
         y_B, y_B_var, s2_B = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, True)
     self.embedding_B = self.embedding_normalize(y_B.detach())
     return self.netG(self.real_A, self.embedding_B)
Esempio n. 10
0
 def test(self):
     if hasattr(self, 'real_B'):
         real_B_E = upsample2d(self.real_B, self.opt.fineSize_E)
         if 'real_B' not in self.visual_names:
             self.visual_names += ['real_B', 'fake_B']
         if not self.opt.bayesian and not self.opt.noisy:
             y_B = self.netE(self.transform_E(real_B_E))
         elif not self.opt.bayesian and self.opt.noisy:
             y_B, logvar_B = self.netE(self.transform_E(self.real_B_E))
         elif self.opt.bayesian and not self.opt.noisy:
             y_B, y_B_var = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, False)
         else:
             # bayesian and noisy
             y_B, y_B_var, s2_B = compute_mu_and_var(self.netE, self.transform_E(self.real_B_E), self.opt.bnn_T, True)
         self.embedding_B = self.embedding_normalize(y_B.detach())
         self.fake_B = self.netG(self.real_A, self.embedding_B)
     return