Esempio n. 1
0
                          len(train_loader) * NUM_EPOCH,
                          loss=losses,
                          top1=top1,
                          top5=top5))
                print("=" * 60)

                # perform validation & save checkpoints per epoch
                # validation statistics per epoch (buffer for visualization)
                print("=" * 60)
                print(
                    "Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints..."
                )
                accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(
                    MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE,
                    lfw, lfw_issame)
                buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw,
                           roc_curve_lfw, batch + 1)
                accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff = perform_val(
                    MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE,
                    cfp_ff, cfp_ff_issame)
                buffer_val(writer, "CFP_FF", accuracy_cfp_ff,
                           best_threshold_cfp_ff, roc_curve_cfp_ff, batch + 1)
                accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(
                    MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE,
                    cfp_fp, cfp_fp_issame)
                buffer_val(writer, "CFP_FP", accuracy_cfp_fp,
                           best_threshold_cfp_fp, roc_curve_cfp_fp, batch + 1)
                accuracy_agedb, best_threshold_agedb, roc_curve_agedb = perform_val(
                    MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE,
                    agedb, agedb_issame)
                buffer_val(writer, "AgeDB", accuracy_agedb,
                           best_threshold_agedb, roc_curve_agedb, batch + 1)
Esempio n. 2
0
def OneEpoch(epoch, train_loader, OPTIMIZER, DISP_FREQ, NUM_EPOCH_WARM_UP, NUM_BATCH_WARM_UP):
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    batch = 0
#iterator = iter(train_loader)
    start = time.time()
    for inputs, labels in train_loader:
        if (epoch + 1 <= NUM_EPOCH_WARM_UP) and (batch + 1 <= NUM_BATCH_WARM_UP): # adjust LR for each training batch during warm up
            warm_up_lr(batch + 1, NUM_BATCH_WARM_UP, LR, OPTIMIZER)

        # compute output
        inputs = inputs.to(DEVICE, non_blocking=True)
        labels = labels.to(DEVICE, non_blocking=True).long()
        features = BACKBONE(inputs)
        outputs = HEAD(features, labels)
        loss = LOSS(outputs, labels)
    
        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, labels, topk = (1, 5))
        losses.update(loss.data.item(), inputs.size(0))
        top1.update(prec1.data.item(), inputs.size(0))
        top5.update(prec5.data.item(), inputs.size(0))
    
        # compute gradient and do SGD step
        OPTIMIZER.zero_grad()
        loss.backward()
        OPTIMIZER.step()
                
                # dispaly training loss & acc every DISP_FREQ
        if ((batch + 1) % DISP_FREQ == 0) and batch != 0:
            print("=" * 60)
            print('Epoch {}/{} Batch {}/{}\t'
                 'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                 'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                 'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                 epoch + 1, NUM_EPOCH, batch + 1, len(train_loader) * NUM_EPOCH, loss = losses, top1 = top1, top5 = top5))
            print("Running speed in the last 100 batches: {:.3f} iter/s.".format(DISP_FREQ / (time.time() - start)))
            start = time.time()
            print("=" * 60)
        batch += 1

    epoch_loss = losses.avg
    epoch_acc = top1.avg
    writer.add_scalar("Training_Loss", epoch_loss, epoch + 1)
    writer.add_scalar("Training_Accuracy", epoch_acc, epoch + 1)
    print("=" * 60)
    print('Epoch: {}/{}\t'
        'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
        'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
        'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
        epoch + 1, NUM_EPOCH, loss = losses, top1 = top1, top5 = top5))
    print("=" * 60)
    # perform validation & save checkpoints per epoch
    # validation statistics per epoch (buffer for visualization)
    print("=" * 60)
    print("Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints...")
    accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw, lfw_issame)
    buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw, roc_curve_lfw, epoch + 1)
#		accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_ff, cfp_ff_issame)
#		buffer_val(writer, "CFP_FF", accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff, epoch + 1)
#		accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_fp, cfp_fp_issame)
#		buffer_val(writer, "CFP_FP", accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp, epoch + 1)
#		accuracy_agedb, best_threshold_agedb, roc_curve_agedb = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, agedb, agedb_issame)
#		buffer_val(writer, "AgeDB", accuracy_agedb, best_threshold_agedb, roc_curve_agedb, epoch + 1)
#		accuracy_calfw, best_threshold_calfw, roc_curve_calfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, calfw, calfw_issame)
#		buffer_val(writer, "CALFW", accuracy_calfw, best_threshold_calfw, roc_curve_calfw, epoch + 1)
#		accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cplfw, cplfw_issame)
#		buffer_val(writer, "CPLFW", accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw, epoch + 1)
    accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, vgg2_fp, vgg2_fp_issame)
    buffer_val(writer, "VGGFace2_FP", accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp, epoch + 1)
    print("=" * 60)

    # save checkpoints per epoch
    if MULTI_GPU:
        torch.save(BACKBONE.module.state_dict(), os.path.join(MODEL_ROOT, "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(BACKBONE_NAME, epoch + 1, batch, get_time())))
        torch.save(HEAD.state_dict(), os.path.join(MODEL_ROOT, "Head_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(HEAD_NAME, epoch + 1, batch, get_time())))
    else:
        torch.save(BACKBONE.state_dict(), os.path.join(MODEL_ROOT, "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(BACKBONE_NAME, epoch + 1, batch, get_time())))
        torch.save(HEAD.state_dict(), os.path.join(MODEL_ROOT, "Head_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(HEAD_NAME, epoch + 1, batch, get_time())))
Esempio n. 3
0
            if (
                (batch + 1) % VER_FREQ == 0
            ) and batch != 0:  #perform validation & save checkpoints (buffer for visualization)
                for params in OPTIMIZER.param_groups:
                    lr = params['lr']
                    break
                print("Learning rate %f" % lr)
                print("Perform Evaluation on", TARGET,
                      ", and Save Checkpoints...")
                acc = []
                for ver in vers:
                    name, data_set, issame = ver
                    accuracy, std, xnorm, best_threshold, roc_curve = perform_val(
                        MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE,
                        BACKBONE, data_set, issame)
                    buffer_val(writer, name, accuracy, std, xnorm,
                               best_threshold, roc_curve, batch + 1)
                    print('[%s][%d]XNorm: %1.5f' % (name, batch + 1, xnorm))
                    print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' %
                          (name, batch + 1, accuracy, std))
                    print('[%s][%d]Best-Threshold: %1.5f' %
                          (name, batch + 1, best_threshold))
                    acc.append(accuracy)

                # save checkpoints per epoch
                if need_save(acc, highest_acc):
                    if MULTI_GPU:
                        torch.save(
                            BACKBONE.module.state_dict(),
                            os.path.join(
                                WORK_PATH,
                                "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth"
Esempio n. 4
0
        print("=" * 60)
        print(
            "Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints..."
        )
        # accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw, lfw_issame)
        # buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw, roc_curve_lfw, epoch + 1)
        # accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_ff, cfp_ff_issame)
        # buffer_val(writer, "CFP_FF", accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff, epoch + 1)
        # accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_fp, cfp_fp_issame)
        # buffer_val(writer, "CFP_FP", accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp, epoch + 1)
        # accuracy_agedb, best_threshold_agedb, roc_curve_agedb = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, agedb, agedb_issame)
        # buffer_val(writer, "AgeDB", accuracy_agedb, best_threshold_agedb, roc_curve_agedb, epoch + 1)
        accuracy_calfw, best_threshold_calfw, roc_curve_calfw = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, calfw,
            calfw_issame)
        buffer_val(writer, "CALFW", accuracy_calfw, best_threshold_calfw,
                   roc_curve_calfw, epoch + 1)
        accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cplfw,
            cplfw_issame)
        buffer_val(writer, "CPLFW", accuracy_cplfw, best_threshold_cplfw,
                   roc_curve_cplfw, epoch + 1)
        # accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, vgg2_fp, vgg2_fp_issame)
        # buffer_val(writer, "VGGFace2_FP", accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp, epoch + 1)
        # print("Epoch {}/{}, Evaluation: LFW Acc: {}, CFP_FF Acc: {}, CFP_FP Acc: {}, AgeDB Acc: {}, CALFW Acc: {}, CPLFW Acc: {}, VGG2_FP Acc: {}".format(epoch + 1, NUM_EPOCH, accuracy_lfw, accuracy_cfp_ff, accuracy_cfp_fp, accuracy_agedb, accuracy_calfw, accuracy_cplfw, accuracy_vgg2_fp))
        # print("=" * 60)
        print("Epoch {}/{}, Evaluation:  CALFW Acc: {}, CPLFW Acc: {}".format(
            epoch + 1, NUM_EPOCH, accuracy_calfw, accuracy_cplfw))
        print("=" * 60)

        # save checkpoints per epoch
        if MULTI_GPU:
Esempio n. 5
0
            print("During  Warm Up Process, Epoch {}/{}".format(
                epoch, NUM_EPOCH_WARM_UP - 1))
        print("Epoch {}/{}, Training Loss {} Acc {}".format(
            epoch, NUM_EPOCH - 1, epoch_loss, epoch_acc))
        print("=" * 60)

        # validation statistics per epoch (buffer for visualization)
        print("=" * 60)
        if epoch <= NUM_EPOCH_WARM_UP - 1:
            print("During  Warm Up Process, Epoch {}/{}".format(
                epoch, NUM_EPOCH_WARM_UP - 1))
        print("Perform Validation on AgeDB_30, LFW and CFP_FP...")
        accuracy_agedb_30, best_threshold_agedb_30, roc_curve_agedb_30 = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, agedb_30,
            agedb_30_issame)
        buffer_val(writer, "AgeDB_30", accuracy_agedb_30,
                   best_threshold_agedb_30, roc_curve_agedb_30, epoch)
        accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw,
            lfw_issame)
        buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw,
                   roc_curve_lfw, epoch)
        accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_fp,
            cfp_fp_issame)
        buffer_val(writer, "CFP_FP", accuracy_cfp_fp, best_threshold_cfp_fp,
                   roc_curve_cfp_fp, epoch)
        print(
            "Epoch {}/{}, Evaluation: AgeDB_30 Acc: {}, LFW Acc: {}, CFP_FP Acc: {}"
            .format(epoch, NUM_EPOCH - 1, accuracy_agedb_30, accuracy_lfw,
                    accuracy_cfp_fp))
        print("=" * 60)
Esempio n. 6
0
              'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
              'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
              'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                  epoch + 1, NUM_EPOCH, loss=losses, top1=top1, top5=top5))
        print("=" * 60)

        # perform validation & save checkpoints per epoch
        # validation statistics per epoch (buffer for visualization)
        print("=" * 60)
        print(
            "Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints..."
        )
        accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(
            MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw,
            lfw_issame)
        buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw,
                   roc_curve_lfw, epoch + 1)
        #print("Epoch {}/{}, Evaluation: LFW Acc: {}, CFP_FF Acc: {}, CFP_FP Acc: {}, AgeDB Acc: {}, CALFW Acc: {}, CPLFW Acc: {}, VGG2_FP Acc: {}".format(epoch + 1, NUM_EPOCH, accuracy_lfw, accuracy_cfp_ff, accuracy_cfp_fp, accuracy_agedb, accuracy_calfw, accuracy_cplfw, accuracy_vgg2_fp))
        print("Epoch {}/{}, Evaluation: LFW Acc: {}".format(
            epoch + 1, NUM_EPOCH, accuracy_lfw))
        print("=" * 60)

        # save checkpoints per epoch
        if MULTI_GPU:
            torch.save(
                BACKBONE.module.state_dict(),
                os.path.join(
                    MODEL_ROOT,
                    "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".
                    format(BACKBONE_NAME, epoch + 1, batch, get_time())))
            torch.save(
                HEAD.state_dict(),
Esempio n. 7
0
            # dispaly training loss & acc every DISP_FREQ
            if batch % 2000 == 0 and batch != 0:
                print("=" * 60)
                print('Epoch {}/{} Batch {}/{}\t'
                      'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                      'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                    epoch + 1, NUM_EPOCH, batch + 1, len(train_loader) * NUM_EPOCH, loss=losses, top1=top1, top5=top5))
                print("=" * 60)

                # perform validation & save checkpoints per epoch
                # validation statistics per epoch (buffer for visualization)
                print("=" * 60)
                print("Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints...")
                accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw, lfw_issame)
                buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw, roc_curve_lfw, batch + 1)
                accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_ff, cfp_ff_issame)
                buffer_val(writer, "CFP_FF", accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff, batch + 1)
                accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_fp, cfp_fp_issame)
                buffer_val(writer, "CFP_FP", accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp, batch + 1)
                accuracy_agedb, best_threshold_agedb, roc_curve_agedb = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, agedb, agedb_issame)
                buffer_val(writer, "AgeDB", accuracy_agedb, best_threshold_agedb, roc_curve_agedb, batch + 1)
                accuracy_calfw, best_threshold_calfw, roc_curve_calfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, calfw, calfw_issame)
                buffer_val(writer, "CALFW", accuracy_calfw, best_threshold_calfw, roc_curve_calfw, batch + 1)
                accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cplfw, cplfw_issame)
                buffer_val(writer, "CPLFW", accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw, batch + 1)
                accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, vgg2_fp, vgg2_fp_issame)
                buffer_val(writer, "VGGFace2_FP", accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp, batch + 1)
                print("Batch {}/{}, Evaluation: LFW Acc: {}, CFP_FF Acc: {}, CFP_FP Acc: {}, AgeDB Acc: {}, CALFW Acc: {}, CPLFW Acc: {}, VGG2_FP Acc: {}".format(batch + 1, len(train_loader) * NUM_EPOCH, accuracy_lfw, accuracy_cfp_ff, accuracy_cfp_fp, accuracy_agedb, accuracy_calfw, accuracy_cplfw, accuracy_vgg2_fp))
                print("=" * 60)