Esempio n. 1
0
def captcha2text(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    '''
    验证码图片转化为文本
    :param image_list:
    :param height:
    :param width:
    :return:
    '''
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, RESTORE_PATH)
        success = 0
        error = 0
        for num in range(0, len(os.listdir(IMAGE_TEST_PATH))):
            text, image = read_dir_image_for_position(num, IMAGE_TEST_PATH)
            image = convert2gray(image)
            image = image.flatten() / 255
            image = [image]
            predict = tf.argmax(
                tf.reshape(
                    y_conv,
                    [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
            vector_list = sess.run(predict, feed_dict={x: image, keep_prob: 1})
            vector_list = vector_list.tolist()
            pre_text = [vec2text(vector) for vector in vector_list]
            if (text == ''.join(pre_text)):
                success += 1
            else:
                error += 1
            print('Label:', text, ' Predict:', pre_text)
        print('total:', success + error, ',success:', success, ',error:',
              error)
Esempio n. 2
0
 def getCaptcha(self):
     captcha = self.sess.get(captchaUrl, headers=accessHeaders)
     image = BytesIO(captcha.content)
     img = Image.open(image)
     imgArray = convert2gray(np.array(img)).flatten() / 255
     captcha_text = self.capthca_break.predictByArray(imgArray)
     captcha_text = ''.join(captcha_text)
     return captcha_text
Esempio n. 3
0
    def predictaByPath(self, img):
        '''通过图片路径来预测验证码'''
        img = np.array(Image.open(img))
        img = convert2gray(img).flatten() / 255
        pred = self.pred.eval(feed_dict={self._x: [img], self._prob: 1})

        captcha_text = []
        for i, c in enumerate(pred):
            for j in range(MAX_CAPTCHA):
                captcha_text.append(chr(getIdx(c[j])))

        return captcha_text
Esempio n. 4
0
def image2text(image, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    pre_text = '1111'
    tf.reset_default_graph()
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, RESTORE_PATH)
        image = convert2gray(image)
        image = image.flatten() / 255
        image = [image]
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict, feed_dict={x: image, keep_prob: 1})
        vector_list = vector_list.tolist()
        pre_text = [vec2text(vector) for vector in vector_list]
    return pre_text
Esempio n. 5
0
    def getImage(self):
        count = 1
        while count < 100000:
            try:
                captcha = self.sess.get(captchaUrl, headers=accessHeaders)
                image = BytesIO(captcha.content)
                img = Image.open(image)

                imgArray = convert2gray(np.array(img)).flatten() / 255
                captcha_text = self.capthca_break.predictByArray(imgArray)
                captcha_text = ''.join(captcha_text)
                self.data['captcha'] = captcha_text
                res = self.sess.post(
                    url=loginUrl, data=self.data, headers=loginHeaders)
                msg = re.findall('showmsg."(.*)",', res.text)
                print(msg)
                if len(msg) == 0:
                    path = 'data/' + captcha_text + '.png'
                    if not os.path.exists(path):
                        img.save(path)
                    print('img', str(count) + '.png', '预测值', captcha_text)
                count += 1
            except requests.exceptions.ConnectionError as e:
                print(e)
Esempio n. 6
0
    if not isdir('./model'):
        print('Model directory does not exists.')
        return
    x = placeholder(float32, [None, height * width])
    keep_prob = placeholder(float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = Saver()
    with Session() as sess:
        saver.restore(sess, latest_checkpoint('./model/'))
        predict = argmax(reshape(
            y_conv, [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list


if __name__ == '__main__':
    text, image = gen_captcha_text_and_image()
    img = Image.fromarray(image)
    image = convert2gray(image)
    image = image.flatten() / 255
    pre_text = captcha2text([image])
    print('Text:', text, ', Actual Text:', pre_text, ', Result:',
          pre_text[0] == text)
    img.show()
Esempio n. 7
0
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('model/'))
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list


if __name__ == '__main__':
    # text, image = gen_captcha_text_and_image()
    # img = Image.fromarray(image)
    # image = convert2gray(image)
    # image = image.flatten() / 255
    # pre_text = captcha2text([image])
    # print("验证码正确值:", text, ' 模型预测值:', pre_text , '正确与否:',pre_text[0] == text)
    # img.show()
    image = Image.open('./validImage/1.jpg')
    im = np.array(image)
    im = convert2gray(im)
    im = im.flatten() / 255
    pre_text = captcha2text([im])
    print("验证码正确值:", '4R62', ' 模型预测值:', pre_text[0], '正确与否:',
          pre_text[0] == '4R62')