self.normalize)).float(), 'kp_2d': torch.tensor(kps).float(), 'image_name': self.images[index], 'data_set': 'lsp' } if __name__ == '__main__': lsp = LspLoader( data_set_path='/home/ubuntu/anaconda3/envs/hmr/pytorch_HMR/data/lsp/', use_crop=True, scale_range=[1.05, 1.2], use_flip=True, flip_prob=1.0) l = lsp.__len__() data_loader = DataLoader(lsp, batch_size=10, shuffle=True) for _ in range(l): r = lsp.__getitem__(_) image = r['image'].cpu().numpy().astype(np.uint8) kps = r['kp_2d'].cpu().numpy() kps[:, :2] = (kps[:, :2] + 1) * args.crop_size / 2.0 base_name = os.path.basename(r['image_name']) draw_lsp_14kp__bone(image, kps) cv2.imshow( base_name, cv2.resize(image, (512, 512), interpolation=cv2.INTER_CUBIC)) cv2.waitKey(0)
self.normalize)).float(), 'kp_2d': torch.from_numpy(kps).float(), 'kp_3d': torch.from_numpy(kp_3d).float(), 'theta': torch.zeros(85).float(), 'image_name': self.images[index], 'w_smpl': 0.0, 'w_3d': 1.0, 'data_set': 'mpi inf 3dhp' } if __name__ == '__main__': mpi = mpi_inf_3dhp_dataloader('E:/HMR/data/mpii_inf_3dhp', True, [1.1, 2.0], False, 5) l = len(mpi) for _ in range(l): r = mpi.__getitem__(_) base_name = os.path.basename(r['image_name']) draw_lsp_14kp__bone(r['image'], r['kp_2d']) cv2.imshow( base_name, cv2.resize(r['image'], (512, 512), interpolation=cv2.INTER_CUBIC)) cv2.waitKey(0)