def get_num_imgs_in_range(range, celldir, querydir='/home/zhangz/.gvfs/data on 128.32.43.40/query3/'):
    queries = util.getSiftFileNames(querydir)
    total_in_range=0
    for querysift in queries:
        lat, lon = info.getQuerySIFTCoord(querysift)
        cell, dist = util.getclosestcell(lat, lon, celldir)
        numinrange = util.getNumJPGInRange(lat, lon, os.path.join(celldir,cell), range)
        total_in_range+=numinrange
    print "average # of imgs within {0} meters of query: {1}".format(range, float(total_in_range)/len(queries))
Esempio n. 2
0
 def iter1():
   for file in util.getSiftFileNames(self.querydir):
     image = _Query()
     image.siftpath = os.path.join(self.querydir, file)
     #TODO: this uses a hard coded dimension
     image.pgm_scale = max(Image.open(os.path.join(self.querydir, image.siftname[:-8] + '.pgm')).size) / max(2592.0, 1456.0)
     image.jpgpath = os.path.join(self.querydir, image.siftname[:-8] + '.jpg')
     image.setSensorCoord(0,0)
     image.check()
     yield image
Esempio n. 3
0
 def iter2():
   for file in util.getSiftFileNames(self.querydir):
     image = _Query()
     if self.QUERY == 'query2':
       image.pgm_scale = 512/2592.0
     image.siftpath = os.path.join(self.querydir, file)
     image.jpgpath = os.path.join(self.querydir, image.siftname[:-8] + '.JPG')
     image.setSensorCoord(*info.add_error(info.getQuerySIFTCoord(file), self.added_error))
     if self.QUERY != 'query4-matlab':
       image.check()
     yield image
def characterizeFuzzy(querydir, dbdir, mainOutputDir, n, copytopmatch):
    start = time.time()
    if not os.path.exists(mainOutputDir):
        os.makedirs(mainOutputDir)
    if copytopmatch:
        if os.path.exists(resultsdir):
            shutil.rmtree(resultsdir)
        os.makedirs(resultsdir)
    files = util.getSiftFileNames(querydir)
    g_count = 0
    y_count = 0
    r_count = 0
    b_count = 0
    o_count = 0
    count = 0
    for queryfile in files:
        for newlat, newlon in skew_location(queryfile, ambiguity):
            closest_cells = util.getclosestcells(newlat, newlon, dbdir)
            count += 1
            [g, y, r, b, o] = query2(querydir, queryfile, dbdir, mainOutputDir, n, copytopmatch, closest_cells, copy_top_n_percell=5)
            if g:
                g_count += 1
                if verbosity > 0:
                    print "G match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
            elif y:
                y_count += 1
                if verbosity > 0:
                    print "Y match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
            elif r:
                r_count += 1
                if verbosity > 0:
                    print "R match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
            elif b:
                b_count += 1
                if verbosity > 0:
                    print "B match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
            elif o:
                o_count += 1
                if verbosity > 0:
                    print "O match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
            else:
                if verbosity > 0:
                    print "No match-g:{0} y:{1} r:{2} b:{3} o:{4} out of {5}".format(g_count, y_count, r_count, b_count, o_count, count)
    end = time.time()
    elapsed = end - start
    if verbosity > 0:
        print "total time:{0}, avg time:{1}".format(elapsed, elapsed / count)
    total_count = g_count + y_count + r_count + b_count + o_count
    match_rate = float(total_count) / count
    print "g:{0} y:{1} r:{2} b:{3} o:{4} = {5}, out of {6}={7}".format(g_count, y_count, r_count, b_count, o_count, total_count, count, match_rate)