Esempio n. 1
0
def test():
    net, saver, image = load_net_for_inference()

    with tf.Session() as sess:
        saver.restore(sess, util.tf.get_latest_ckpt(FLAGS.checkpoint_path))
        files = util.io.ls(FLAGS.dataset_dir)

        for image_name in files:
            start = time.time()
            file_path = util.io.join_path(FLAGS.dataset_dir, image_name)
            image_data = util.img.imread(file_path)
            image_data = cv2.resize(
                image_data, (FLAGS.eval_image_width, FLAGS.eval_image_height),
                interpolation=cv2.INTER_AREA)
            link_scores, pixel_scores = predict(sess, net, image, image_data)
            link_time = time.time()
            #cProfile.runctx('post_process(image_data, pixel_scores, mask_vals)', globals(), locals())
            post_process(image_data, link_scores, pixel_scores)
            post_process_new(image_data, link_scores, pixel_scores)
            others = time.time()

            output_file = os.path.expanduser(util.get_temp_path(""))
            cv2.imwrite(output_file, image_data)
            sit_time = time.time()
            print("Score %.3f, postprocess %.3f, sit %.3f" %
                  (link_time - start, others - link_time, sit_time - others))
Esempio n. 2
0
def test():
    file_path = util.io.join_path(FLAGS.dataset_dir, "img_20.jpg")
    image_data = util.img.imread(file_path)
    image_data = cv2.resize(image_data,
                            (FLAGS.eval_image_width, FLAGS.eval_image_height),
                            interpolation=cv2.INTER_AREA)

    link_scores = np.load("link_scores.bin")
    pixel_scores = np.load("pixel_scores.bin")

    boxes_old = post_process(image_data, link_scores, pixel_scores)
    boxes_new = post_process_new(image_data, link_scores, pixel_scores)

    output_file = os.path.expanduser(util.get_temp_path(""))
    cv2.imwrite(output_file, image_data)

    compare_boxes(boxes_old, boxes_new)
Esempio n. 3
0
def show_images(images,
                titles=None,
                shape=None,
                share_axis=False,
                bgr2rgb=False,
                maximized=False,
                show=True,
                gray=False,
                save=False,
                color_bar=False,
                path=None,
                axis_off=False,
                vertical=False,
                subtitle=None):
    plt.close('all')
    if shape == None:
        if vertical:
            shape = (len(images), 1)
        else:
            shape = (1, len(images))

    shape = list(shape)
    if shape[0] < 0:
        shape[0] = (len(images) + shape[1]) / shape[1]
    elif shape[1] < 0:
        shape[1] = (len(images + shape[0])) / shape[0]
    ret_axes = []
    ax0 = None
    plt.figure()
    for idx, img in enumerate(images):
        if bgr2rgb:
            img = util.img.bgr2rgb(img)
        loc = (idx / shape[1], idx % shape[1])
        if idx == 0:
            ax = plt.subplot2grid(shape, loc)
            ax0 = ax
        else:
            if share_axis:
                ax = plt.subplot2grid(shape, loc, sharex=ax0, sharey=ax0)
            else:
                ax = plt.subplot2grid(shape, loc)
        if len(np.shape(img)) == 2 and gray:
            img_ax = ax.imshow(img, cmap='gray')
        else:
            img_ax = ax.imshow(img)

        if len(np.shape(img)) == 2 and color_bar:
            plt.colorbar(img_ax, ax=ax)
        if titles != None:
            ax.set_title(titles[idx])

        if axis_off:
            plt.axis('off')
#             plt.xticks([]), plt.yticks([])
        ret_axes.append(ax)

    if subtitle is not None:
        set_subtitle(subtitle)
    if maximized:
        maximize_figure()

    if save:
        if path is None:
            path = util.get_temp_path()


#             raise ValueError('path can not be None when save is True')
        save_image(path)
    if show:
        plt.show()
    return path