parser.add_argument("--grad_clip", type=float, default=1.5) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--lr_decay_step", type=int, default=100) parser.add_argument("--use_deadline", action="store_true") parser.add_argument("--range_l", type=str, default="4.60") parser.add_argument("--range_r", type=str, default="4.60") parser.add_argument("--use_cuda", action="store_true", default=True) args = parser.parse_args() confidence = 0.05 test_module = heu.test_RTA_LC use_cuda = args.use_cuda if __name__ == "__main__": util_range = get_util_range(args.num_procs) trsets = [] tesets = [] on = False for util in util_range: on = False if util == args.range_l: on = True if on: with open( "../Pandadata/tr/%d-%d/%s" % (args.num_procs, args.num_tasks, util), 'rb') as f: ts = pickle.load(f) trsets.append(ts) with open( "../Pandadata/te/%d-%d/%s" %
def kl_div(n_step): util_range = get_util_range(args.num_procs) trsets = [] tesets = [] on = False for util in util_range: on = False if util == args.range_l: on = True if on: if positive: load_file_name = "../Pandadata/tr/%d-%d/positive/%s" else: load_file_name = "../Pandadata/tr/%d-%d/%s" with open(load_file_name % (args.num_procs, args.num_tasks, util), 'rb') as f: ts = pickle.load(f) trsets.append(ts) with open("../Pandadata/te/%d-%d/%s" % (args.num_procs, args.num_tasks, util), 'rb') as f: ts = pickle.load(f) tesets.append(ts) if util == args.range_r: break train_dataset = Datasets(trsets) test_dataset = Datasets(tesets) train_dataset.setlen(args.num_train_dataset) test_dataset.setlen(args.num_test_dataset) train_loader = DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=True ) test_loader = DataLoader( test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True ) eval_loader = DataLoader( test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True ) temp_fname = "localRL-p%d-t%d-d%d-l[%s, %s].torchmodel" % \ (args.num_procs, args.num_tasks, int(use_deadline), args.range_l, args.range_r) model = torch.load("../Pandamodels/localrlmodels/" + temp_fname).cuda() rl_model = Solver( args.num_procs, args.embedding_size, args.hidden_size, args.num_tasks, use_deadline=False, use_cuda=True, ret_embedded_vector=True, ) rl_model.load_state_dict(model.state_dict()) if use_cuda: model = model.cuda() rl_model = rl_model.cuda() rl_model = rl_model.eval() if use_cuda: rl_model = rl_model.to("cuda:0") ss = np.array(list(range(32))) ss2 = np.array(list(reversed(range(32)))) guide = torch.LongTensor(np.array([ss, ss2], dtype=np.int32)).cuda() for epoch in range(args.num_epochs): loss_ = 0 avg_hit = [] for batch_idx, (_, sample_batch) in enumerate(train_loader): sample_batch = sample_batch[:2, :, :] _, actions, distributions = rl_model(sample_batch, guide=guide) break break a = distributions[0][5].detach().cpu().numpy() b = distributions[1][5].detach().cpu().numpy() print(0.5 * np.sum(np.abs(a - b))) exit(0) kl_div = 0 KL_calc = torch.nn.KLDivLoss(reduction="batchmean") actions = actions.squeeze() # Timestep +1 if n_step == 1: for t in range(args.num_tasks - 1): previous_distribution = distributions[t].squeeze() sampled_task = actions[t] previous_distribution[sampled_task] = 0 # renormalized_distribution = previous_distribution renormalized_distribution = torch.log(previous_distribution / torch.sum(previous_distribution)) next_distribution = distributions[t+1] kl_div += KL_calc(renormalized_distribution, next_distribution) # kl_div += torch.nn.KLDivLoss(size_average=False)(renormalized_distribution, next_distribution) return kl_div / (args.num_tasks-1) # Timestep +3 elif n_step == 3: for t in range(args.num_tasks - 3): prev_distribution = distributions[t].squeeze() first_sampled_mask = actions[t] second_sampled_mask = actions[t+1] third_sampled_mask = actions[t+2] prev_distribution[first_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution[second_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution = prev_distribution.detach().cpu().numpy() # renormalized_distribution = torch.log(prev_distribution) rl_next_distribution = distributions[t+2] rl_next_distribution = rl_next_distribution.detach().cpu().numpy() kl_div += np.sum(np.abs(prev_distribution - rl_next_distribution)) # kl_div += KL_calc(renormalized_distribution, rl_next_distribution) return kl_div / (args.num_tasks-3) # Timestep +5 else: for t in range(args.num_tasks - 5): prev_distribution = distributions[t].squeeze() first_sampled_mask = actions[t] second_sampled_mask = actions[t+1] third_sampled_mask = actions[t+2] fourth_sampled_mask = actions[t+3] fifth_sampled_mask = actions[t+4] prev_distribution[first_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution[second_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution[third_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution[fourth_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) prev_distribution[fifth_sampled_mask] = 0 prev_distribution = prev_distribution / torch.sum(prev_distribution) renormalized_distribution = torch.log(prev_distribution) rl_next_distribution = distributions[t+5] kl_div += KL_calc(renormalized_distribution, rl_next_distribution) return kl_div / (args.num_tasks - 5)