Esempio n. 1
0
    def my_next_crop(self, for_g):
        size_of_crop = self.g_input_shape if for_g else self.d_input_shape
        cropped_image = torchvision.transforms.RandomCrop(size_of_crop)(im2tensor(self.input_image))

        if not for_g:
            cropped_image += im2tensor(np.random.randn(size_of_crop, size_of_crop, 3) / 255.)

        return cropped_image
Esempio n. 2
0
    def __getitem__(self, idx):
        """Get a crop for both G and D """
        g_in = self.next_crop(for_g=True, idx=idx)
        d_in = self.next_crop(for_g=False, idx=idx)
        d_bq = imresize(im=d_in,
                        scale_factor=int(1 /
                                         self.conf.scale_factor_downsampler),
                        kernel='cubic')

        return {
            'HR': im2tensor(g_in).squeeze(),
            'LR': im2tensor(d_in).squeeze(),
            'LR_bicubic': im2tensor(d_bq).squeeze()
        }
Esempio n. 3
0
 def next_crop(self, for_g, idx):
     """Return a crop according to the pre-determined list of indices. Noise is added to crops for D"""
     size = self.g_input_shape if for_g else self.d_input_shape
     top, left = self.get_top_left(size, for_g, idx)
     crop_im = self.input_image[top:top + size, left:left + size, :].copy()
     if not for_g:  # Add noise to the image for d
         crop_im += np.random.randn(*crop_im.shape) / 255.0
     return im2tensor(crop_im)
Esempio n. 4
0
    def __init__(self, conf, gan):
        # Default shapes
        self.g_input_shape = conf.input_crop_size
        self.d_input_shape = gan.G.output_size  # shape entering D downscaled by G

        # Read input image
        self.input_image = read_image(conf.input_image_path) / 255.
        self.sr_noise = im2tensor(np.random.rand(*self.input_image.shape))
        self.lr_noise = im2tensor(np.random.rand(*self.input_image.shape))

        # self.shave_edges(scale_factor=conf.scale_factor, real_image=conf.real_image)

        self.in_rows, self.in_cols = self.input_image.shape[0:2]

        # Create prob map for choosing the crop
        self.crop_indices_for_g, self.crop_indices_for_d = self.make_list_of_crop_indices(
            conf=conf)
Esempio n. 5
0
    def finish(self, image):

        with torch.no_grad():
            image = im2tensor(image)

            sr = self.U(image)
            if self.conf.X4:
                sr = im2tensor(tensor2im(sr))
                sr = self.U(sr)
            sr = tensor2im(sr)

            def save_np_as_img(arr, path):
                Image.fromarray(np.uint8(arr)).save(path)

            save_np_as_img(
                sr, os.path.join(self.conf.output_dir_path, 'image sr.png'))
            print('FINISHED RUN (see --%s-- folder)\n' %
                  self.conf.output_dir_path + '*' * 60 + '\n\n')
Esempio n. 6
0
    def __init__(self, conf):
        # Fix random seed
        torch.manual_seed(0)
        torch.backends.cudnn.deterministic = True  # slightly reduces throughput

        # Acquire configuration
        self.conf = conf

        # Define the networks
        self.G_DN = networks.Generator_DN().cuda()
        self.D_DN = networks.Discriminator_DN().cuda()
        self.G_UP = networks.Generator_UP().cuda()

        # Losses
        self.criterion_gan = loss.GANLoss().cuda()
        self.criterion_cycle = torch.nn.L1Loss()
        self.criterion_interp = torch.nn.L1Loss()
        self.regularization = loss.DownsamplerRegularization(
            conf.scale_factor_downsampler, self.G_DN.G_kernel_size)

        # Initialize networks weights
        self.G_DN.apply(networks.weights_init_G_DN)
        self.D_DN.apply(networks.weights_init_D_DN)
        self.G_UP.apply(networks.weights_init_G_UP)

        # Optimizers
        self.optimizer_G_DN = torch.optim.Adam(self.G_DN.parameters(),
                                               lr=conf.lr_G_DN,
                                               betas=(conf.beta1, 0.999))
        self.optimizer_D_DN = torch.optim.Adam(self.D_DN.parameters(),
                                               lr=conf.lr_D_DN,
                                               betas=(conf.beta1, 0.999))
        self.optimizer_G_UP = torch.optim.Adam(self.G_UP.parameters(),
                                               lr=conf.lr_G_UP,
                                               betas=(conf.beta1, 0.999))

        # Read input image
        self.in_img = util.read_image(conf.input_image_path)
        self.in_img_t = util.im2tensor(self.in_img)
        b_x = self.in_img_t.shape[2] % conf.scale_factor
        b_y = self.in_img_t.shape[3] % conf.scale_factor
        self.in_img_cropped_t = self.in_img_t[..., b_x:, b_y:]

        self.gt_img = util.read_image(
            conf.gt_path) if conf.gt_path is not None else None
        self.gt_kernel = loadmat(
            conf.kernel_path
        )['Kernel'] if conf.kernel_path is not None else None

        if self.gt_kernel is not None:
            self.gt_kernel = np.pad(self.gt_kernel, 1, 'constant')
            self.gt_kernel = util.kernel_shift(self.gt_kernel,
                                               sf=conf.scale_factor)
            self.gt_kernel_t = torch.FloatTensor(self.gt_kernel).cuda()

            self.gt_downsampled_img_t = util.downscale_with_kernel(
                self.in_img_cropped_t, self.gt_kernel_t)
            self.gt_downsampled_img = util.tensor2im(self.gt_downsampled_img_t)

        # Debug variables
        self.debug_steps = []
        self.UP_psnrs = [] if self.gt_img is not None else None
        self.DN_psnrs = [] if self.gt_kernel is not None else None

        if self.conf.debug:
            self.loss_GANs = []
            self.loss_cycle_forwards = []
            self.loss_cycle_backwards = []
            self.loss_interps = []
            self.loss_Discriminators = []

        self.iter = 0